cesar vor 2 Wochen
Ursprung
Commit
3415161568
1 geänderte Dateien mit 475 neuen und 0 gelöschten Zeilen
  1. 475
    0
      v4_class.py

+ 475
- 0
v4_class.py Datei anzeigen

@@ -0,0 +1,475 @@
1
+# Csar Fdez, UdL, 2025
2
+# Changes from v1:   Normalization 
3
+# IN v1, each failure type has its own normalization pars (mean and stdevs)
4
+# In v2, mean and stdev is the same for all data
5
+# v3.py trains the models looping in TIME_STEPS (4,8,12,16,20,24,....) finding the optimal Threshold factor
6
+
7
+#  Derived from v3_class, derived from v3.py with code from v1_multifailure.py
8
+#  This code don't train for multiple time steps !!
9
+
10
+import pandas as pd
11
+import matplotlib.pyplot as plt
12
+import datetime
13
+import numpy as np
14
+import keras
15
+import os.path
16
+from keras import layers
17
+from optparse import OptionParser
18
+import copy
19
+import pickle
20
+
21
+
22
+parser = OptionParser()
23
+parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
24
+parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
25
+parser.add_option("-f", "--thresholdfactor", dest="TF", help="Threshold Factor ", default=1.4)
26
+
27
+(options, args) = parser.parse_args()
28
+
29
+
30
+# data files arrays. Index:
31
+# 0.  No failure
32
+# 1.  Blocked evaporator
33
+# 2.   Full Blocked condenser
34
+# 3.   Partial Blocked condenser
35
+# 4   Fan condenser not working
36
+# 5.  Open door
37
+
38
+
39
+NumberOfFailures=4  # So far, we have only data for the first 4 types of failures
40
+datafiles=[]
41
+for i in range(NumberOfFailures+1):
42
+    datafiles.append([])
43
+
44
+# Next set of ddata corresponds to Freezer, SP=-26
45
+datafiles[0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_','2025-01-27_5_','2025-01-28_5_'] 
46
+datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] 
47
+#datafiles[1]=['2024-12-17_5_','2024-12-16_5_','2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] #   This have transitions
48
+datafiles[2]=['2024-12-18_5_','2024-12-19_5_'] 
49
+datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_'] 
50
+datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_'] 
51
+#datafiles[4]=['2024-12-27_5_','2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']  #   This have transitions
52
+
53
+#datafiles[4]=[] 
54
+
55
+# Features suggested by Xavier
56
+# Care with 'tc s3' because on datafiles[0] is always nulll
57
+# Seems to be incoropored in new tests
58
+
59
+#r1s5 supply air flow temperature
60
+#r1s1 inlet evaporator temperature
61
+#r1s4 condenser outlet
62
+
63
+# VAriables r1s4 and pa1 apiii  may not exists in cloud controlers
64
+
65
+
66
+features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
67
+features=['r1 s1','r1 s4','r1 s5']
68
+featureNames={}
69
+featureNames['r1 s1']='$T_{evap}$'
70
+featureNames['r1 s4']='$T_{cond}$'
71
+featureNames['r1 s5']='$T_{air}$'
72
+featureNames['pa1 apiii']='$P_{elec}$'
73
+
74
+unitNames={}
75
+unitNames['r1 s1']='$(^{o}C)$'
76
+unitNames['r1 s4']='$(^{o}C)$'
77
+unitNames['r1 s5']='$(^{o}C)$'
78
+unitNames['pa1 apiii']='$(W)$'
79
+
80
+
81
+#features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
82
+
83
+#features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
84
+
85
+NumFeatures=len(features)
86
+
87
+df_list=[]
88
+for i in range(NumberOfFailures+1):
89
+    df_list.append([])
90
+
91
+for i in range(NumberOfFailures+1):
92
+    dftemp=[]
93
+    for f in datafiles[i]:
94
+        print("                 ", f)
95
+        #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
96
+        df1 = pd.read_csv('./data/'+f+'.csv')
97
+        dftemp.append(df1)
98
+    df_list[i]=pd.concat(dftemp)
99
+
100
+
101
+# subsampled to 5'  =  30 * 10"
102
+# We consider smaples every 5' because in production, we will only have data at this frequency
103
+subsamplingrate=30
104
+
105
+dataframe=[]
106
+for i in range(NumberOfFailures+1):
107
+    dataframe.append([])
108
+
109
+for i in range(NumberOfFailures+1):
110
+    datalength=df_list[i].shape[0]
111
+    dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
112
+    dataframe[i].reset_index(inplace=True,drop=True)
113
+    dataframe[i].dropna(inplace=True)
114
+
115
+
116
+# Train data is first 2/3 of data
117
+# Test data is: last 1/3 of data 
118
+dataTrain=[]
119
+dataTest=[]
120
+for i in range(NumberOfFailures+1):
121
+    dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
122
+    dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
123
+
124
+# Calculate means and stdev
125
+a=dataTrain[0]
126
+for i in range(1,NumberOfFailures+1):
127
+    a=np.vstack((a,dataTrain[i]))
128
+
129
+means=a.mean(axis=0) 
130
+stdevs=a.std(axis=0)
131
+def normalize2(train,test):
132
+    return( (train-means)/stdevs, (test-means)/stdevs )
133
+
134
+dataTrainNorm=[]
135
+dataTestNorm=[]
136
+for i in range(NumberOfFailures+1):
137
+    dataTrainNorm.append([])
138
+    dataTestNorm.append([])
139
+
140
+for i in range(NumberOfFailures+1):
141
+    (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
142
+
143
+def plotData():    
144
+    fig, axes = plt.subplots(
145
+        nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
146
+    )
147
+    for i in range(NumberOfFailures+1):
148
+        axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+",  feature 0")
149
+        axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+",  feature 1")
150
+    #axes[1].legend()
151
+    #axes[0].set_ylabel(features[0])
152
+    #axes[1].set_ylabel(features[1])
153
+    plt.show()
154
+
155
+#plotData()
156
+#exit(0)
157
+
158
+
159
+NumFilters=64
160
+KernelSize=7
161
+DropOut=0.2
162
+ThresholdFactor=1.4
163
+def create_sequences(values, time_steps):
164
+    output = []
165
+    for i in range(len(values) - time_steps + 1):
166
+        output.append(values[i : (i + time_steps)])
167
+    return np.stack(output)
168
+
169
+def AtLeastOneTrue(x):
170
+    for i in range(NumFeatures):
171
+        if x[i]:
172
+            return True
173
+    return False
174
+
175
+
176
+def anomalyMetric(th,ts,testList):  # first of list is non failure data
177
+    # FP, TP: false/true positive
178
+    # TN, FN: true/false negative
179
+    # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
180
+    # Specificity: true negative ratio given  data is OK: TN/(TN+FP)
181
+    # Accuracy: Rate of correct predictions:  (TN+TP)/(TN+TP+FP+FN)
182
+    # Precision: Rate of positive results:  TP/(TP+FP)  
183
+    # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
184
+    # F2-score: predictive performance measure:  2*Specificity*Sensitity/(Specificity+Sensitity)
185
+    x_test = create_sequences(testList[0],ts)
186
+    x_test_pred = model.predict(x_test)
187
+    test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
188
+    anomalies = test_mae_loss > th
189
+    count=0
190
+    for i in range(anomalies.shape[0]):
191
+        if AtLeastOneTrue(anomalies[i]):
192
+            count+=1
193
+    FP=count
194
+    TN=anomalies.shape[0]-count
195
+    count=0
196
+    TP=np.zeros((NumberOfFailures))
197
+    FN=np.zeros((NumberOfFailures))
198
+    Sensitivity=np.zeros((NumberOfFailures))
199
+    Precision=np.zeros((NumberOfFailures))
200
+    for i in range(1,len(testList)):
201
+        x_test = create_sequences(testList[i],ts)
202
+        x_test_pred = model.predict(x_test)
203
+        test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
204
+        anomalies = test_mae_loss > th
205
+        count=0
206
+        for j in range(anomalies.shape[0]):
207
+            if AtLeastOneTrue(anomalies[j]):
208
+                count+=1
209
+        TP[i-1] = count
210
+        FN[i-1] = anomalies.shape[0]-count
211
+        Sensitivity[i-1]=TP[i-1]/(TP[i-1]+FN[i-1])
212
+        Precision[i-1]=TP[i-1]/(TP[i-1]+FP)
213
+    GlobalSensitivity=TP.sum()/(TP.sum()+FN.sum())
214
+    Specificity=TN/(TN+FP)
215
+    Accuracy=(TN+TP.sum())/(TN+TP.sum()+FP+FN.sum())
216
+    GlobalPrecision=TP.sum()/(TP.sum()+FP)
217
+    F1Score= 2*GlobalPrecision*GlobalSensitivity/(GlobalPrecision+GlobalSensitivity)
218
+    F2Score = 2*Specificity*GlobalSensitivity/(Specificity+GlobalSensitivity)
219
+    print("Global Precision: ",GlobalPrecision)
220
+    print("Precision: ",Precision)
221
+    print("Global Sensitivity: ",GlobalSensitivity)
222
+    print("Sensitivity: ",Sensitivity)
223
+    #print("Specifity: ",Specificity)
224
+    #print("Accuracy: ",Accuracy)
225
+    print("F1Score: ",F1Score)
226
+    #print("F2Score: ",F2Score)
227
+    #print("FP: ",FP)
228
+    #return Sensitivity+Specifity
229
+    return F1Score
230
+
231
+
232
+
233
+def listToString(l):
234
+    r=''
235
+    for i in l:
236
+        r+=str(i)
237
+    return(r.replace(' ',''))
238
+
239
+threshold={} 
240
+
241
+fname='threshold_class_v4_'+listToString(features)+'.pk'
242
+if os.path.isfile(fname):  # Checks if it's a file and exists
243
+    print("File ",fname," exists. Loading it!")
244
+    file = open(fname, 'rb')
245
+    threshold=pickle.load(file)
246
+    file.close()
247
+    if not int(options.timesteps) in threshold.keys():
248
+        threshold[int(options.timesteps)]=[]
249
+        for i in range(NumberOfFailures+1):
250
+            threshold[int(options.timesteps)].append(0) # Initzialize
251
+else:
252
+    threshold[int(options.timesteps)]=[]
253
+    for i in range(NumberOfFailures+1):
254
+        threshold[int(options.timesteps)].append(0) # Initzialize
255
+
256
+
257
+model=[]
258
+modelckpt_callback =[]
259
+es_callback =[]
260
+path_checkpoint=[]
261
+
262
+timesteps=int(options.timesteps)
263
+x_train=[]
264
+for i in range(NumberOfFailures+1):
265
+    x_train.append(create_sequences(dataTrainNorm[i],timesteps))
266
+    model.append([])
267
+    model[i] = keras.Sequential(
268
+        [
269
+            layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])),
270
+            layers.Conv1D(
271
+                filters=NumFilters,
272
+                kernel_size=KernelSize,
273
+                padding="same",
274
+                strides=2,
275
+                activation="relu",
276
+            ),
277
+            layers.Dropout(rate=DropOut),
278
+            layers.Conv1D(
279
+                filters=int(NumFilters/2),
280
+                kernel_size=KernelSize,
281
+                padding="same",
282
+                strides=2,
283
+                activation="relu",
284
+            ),
285
+            layers.Conv1DTranspose(
286
+                filters=int(NumFilters/2),
287
+                kernel_size=KernelSize,
288
+                padding="same",
289
+                strides=2,
290
+                activation="relu",
291
+            ),
292
+            layers.Dropout(rate=DropOut),
293
+            layers.Conv1DTranspose(
294
+                filters=NumFilters,
295
+                kernel_size=KernelSize,
296
+                padding="same",
297
+                strides=2,
298
+                activation="relu",
299
+            ),
300
+            layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"),
301
+        ]
302
+    )
303
+    model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
304
+    model[i].summary()
305
+    path_checkpoint.append("model_class_v4_"+str(i)+"_"+str(timesteps)+listToString(features)+"_checkpoint.weights.h5")
306
+    es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15))
307
+    modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,))
308
+
309
+
310
+if options.train:
311
+    history=[]    
312
+    for i in range(NumberOfFailures+1):
313
+        history.append(model[i].fit( x_train[i], x_train[i], epochs=400, batch_size=128, validation_split=0.3, callbacks=[  es_callback[i], modelckpt_callback[i]      ],))
314
+
315
+        x_train_pred=model[i].predict(x_train[i])
316
+        train_mae_loss=np.mean(np.abs(x_train_pred - x_train[i]), axis=1)
317
+        threshold[timesteps][i]=np.max(train_mae_loss,axis=0)
318
+
319
+    file = open('threshold_class_v4_'+listToString(features)+'.pk', 'wb')
320
+    pickle.dump(threshold, file)
321
+    file.close()
322
+else:
323
+    for i in range(NumberOfFailures+1):
324
+        model[i].load_weights(path_checkpoint[i])
325
+
326
+file = open('threshold_class_v4_'+listToString(features)+'.pk', 'rb')
327
+threshold=pickle.load(file)
328
+file.close()
329
+#print(threshold)   
330
+
331
+#  1st scenario. Detect only anomaly.  Later, we will classiffy it
332
+# Test data=  testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
333
+datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]]
334
+
335
+x_test=create_sequences(datalist[0],int(options.timesteps))
336
+for i in range(1,len(datalist)):
337
+    x_test=np.vstack((x_test,create_sequences(datalist[i],int(options.timesteps))))
338
+
339
+x_test_pred = model[0].predict(x_test)
340
+test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
341
+anomalies = test_mae_loss > threshold[int(options.timesteps)][0]*float(options.TF)
342
+anomalous_data_indices = []
343
+for i in range(anomalies.shape[0]):
344
+    if AtLeastOneTrue(anomalies[i]):
345
+    #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
346
+        anomalous_data_indices.append(i)
347
+
348
+# Define ranges for plotting in different colors
349
+testRanges=[]
350
+r=0
351
+for i in range(len(datalist)):
352
+    testRanges.append([r,r+datalist[i].shape[0]-int(options.timesteps)])
353
+    r+=datalist[i].shape[0]-int(options.timesteps)
354
+
355
+# Let's plot some features
356
+
357
+colorline=['violet','lightcoral','cyan','lime','grey']
358
+colordot=['darkviolet','red','blue','green','black']
359
+
360
+#featuresToPlot=['r1 s1','r1 s2','r1 s3','pa1 apiii']
361
+featuresToPlot=features
362
+
363
+indexesToPlot=[]
364
+for i in featuresToPlot:
365
+    indexesToPlot.append(features.index(i))
366
+
367
+
368
+
369
+def plotData3():
370
+    NumFeaturesToPlot=len(indexesToPlot)
371
+    plt.rcParams.update({'font.size': 16})
372
+    fig, axes = plt.subplots(
373
+        nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
374
+    )
375
+    for i in range(NumFeaturesToPlot):
376
+        x=[]
377
+        y=[]
378
+        for k in anomalous_data_indices:
379
+            if (k)<x_test.shape[0]:
380
+                x.append(k)
381
+                y.append(x_test[k,0,indexesToPlot[i]]*stdevs[i]+means[i])
382
+        axes[i].plot(x,y ,color='black',marker='.',linewidth=0,label="Fail detection" )
383
+
384
+        init=0
385
+        end=testRanges[0][1]
386
+        axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="No fail")
387
+        init=end
388
+        end+=(testRanges[1][1]-testRanges[1][0])
389
+        for j in range(1,NumberOfFailures+1):
390
+            axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Fail type "+str(j), color=colorline[j-1],linewidth=1)
391
+            if j<NumberOfFailures:
392
+                init=end
393
+                end+=(testRanges[j+1][1]-testRanges[j+1][0])
394
+
395
+        if i==(NumFeatures-1):
396
+            axes[i].legend(loc='right')
397
+        s=''
398
+        s+=featureNames[features[indexesToPlot[i]]]
399
+        s+=' '+unitNames[features[indexesToPlot[i]]]
400
+        axes[i].set_ylabel(s)
401
+        axes[i].grid()
402
+    axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
403
+    plt.show()
404
+
405
+anomalyMetric(threshold[int(options.timesteps)][0]*float(options.TF), int(options.timesteps),datalist)
406
+plotData3()
407
+exit(0)
408
+
409
+#   2nd scenario. Go over anomalies and classify it by less error
410
+
411
+anomalous_data_type=[]
412
+x_test_predict=[]
413
+for m in range(1,NumberOfFailures+1):
414
+    x_test_predict.append(model[m].predict(x_test))
415
+
416
+anomalous_data_type={}
417
+for i in range(1,NumberOfFailures+1):
418
+    anomalous_data_type[i-1]=[]
419
+
420
+for i in anomalous_data_indices:
421
+    error=[]
422
+    for m in range(1,NumberOfFailures+1):
423
+        error.append(np.mean(np.mean(np.abs(x_test_predict[m-1][i:i+1,:,:]-x_test[i:i+1,:,:]),axis=1)))
424
+    anomalous_data_type[np.argmin(error)].append(i)
425
+
426
+
427
+def plotData4():
428
+    NumFeaturesToPlot=len(indexesToPlot)
429
+    plt.rcParams.update({'font.size': 16})
430
+    fig, axes = plt.subplots(
431
+        nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
432
+    )
433
+    for i in range(NumFeaturesToPlot):
434
+
435
+
436
+        init=0
437
+        end=testRanges[0][1]
438
+        axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="No fail", color='black')
439
+        init=end
440
+        end+=(testRanges[1][1]-testRanges[1][0])
441
+        for j in range(1,NumberOfFailures+1):
442
+            axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Fail type "+str(j), color=colorline[j-1],linewidth=1)
443
+            if j<NumberOfFailures:
444
+                init=end
445
+                end+=(testRanges[j+1][1]-testRanges[j+1][0])
446
+
447
+        for j in range(NumberOfFailures):
448
+            x=[]
449
+            y=[]
450
+            for k in anomalous_data_type[j]:
451
+                if (k+int(options.timesteps))<x_test.shape[0]:
452
+                    x.append(k+int(options.timesteps))
453
+                    y.append(x_test[k+int(options.timesteps),0,indexesToPlot[i]]*stdevs[i]+means[i])
454
+            axes[i].plot(x,y ,color=colordot[j],marker='.',linewidth=0,label="Fail detect  type "+str(j+1) )
455
+
456
+
457
+
458
+        if i==(NumFeatures-1):
459
+            axes[i].legend(loc='right')
460
+        s=''
461
+        s+=featureNames[features[indexesToPlot[i]]]
462
+        s+=' '+unitNames[features[indexesToPlot[i]]]
463
+        axes[i].set_ylabel(s)
464
+        axes[i].grid()
465
+    axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
466
+    plt.show()
467
+
468
+
469
+plotData4()
470
+
471
+##   It remains to implemenent anomaly metrics for each failure type
472
+
473
+exit(0)
474
+
475
+

Powered by TurnKey Linux.