|
@@ -1,4 +1,7 @@
|
1
|
1
|
# Csar Fdez, UdL, 2025
|
|
2
|
+# Changes from v1: Normalization
|
|
3
|
+# IN v1, each failure type has its own normalization pars (mean and stdevs)
|
|
4
|
+# In v2, mean and stdev is the same for all data
|
2
|
5
|
import pandas as pd
|
3
|
6
|
import matplotlib.pyplot as plt
|
4
|
7
|
import datetime
|
|
@@ -8,10 +11,8 @@ import os.path
|
8
|
11
|
import pickle
|
9
|
12
|
from keras import layers
|
10
|
13
|
from optparse import OptionParser
|
|
14
|
+import copy
|
11
|
15
|
|
12
|
|
-# facility type 5. Mural cerrado de congelación (closed freezer). Set point at -18 (we will have two possible setpoints, -18 and -26)
|
13
|
|
-# This code only deals with a given failure type
|
14
|
|
-# Data for abnormal functioning corresponds to Condenser Fan failure
|
15
|
16
|
|
16
|
17
|
parser = OptionParser()
|
17
|
18
|
parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
|
|
@@ -19,178 +20,409 @@ parser.add_option("-t", "--train", dest="train", help="Trains the models (false)
|
19
|
20
|
(options, args) = parser.parse_args()
|
20
|
21
|
|
21
|
22
|
|
22
|
|
-normal_datafiles_list=['2025-01-09_5_','2025-01-10_5_','2025-01-11_5_']
|
23
|
|
-anormal_datafiles_list=['2025-01-04_5_','2025-01-05_5_','2025-01-06_5_','2025-01-07_5_']
|
|
23
|
+# data files arrays. Index:
|
|
24
|
+# 0. No failure
|
|
25
|
+# 1. Blocked evaporator
|
|
26
|
+# 2. Full Blocked condenser
|
|
27
|
+# 3. Partial Blocked condenser
|
|
28
|
+# 4 Fan condenser not working
|
|
29
|
+# 5. Open door
|
24
|
30
|
|
25
|
|
-# Features suggested by Xavier
|
26
|
|
-features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
|
27
|
|
-NumFeatures=len(features)
|
28
|
31
|
|
29
|
|
-df_list=[]
|
30
|
|
-for f in normal_datafiles_list:
|
31
|
|
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
|
32
|
|
- df1 = pd.read_csv('./data/'+f+'.csv')
|
33
|
|
- df_list.append(df1)
|
|
32
|
+NumberOfFailures=4 # So far, we have only data for the first 4 types of failures
|
|
33
|
+datafiles=[]
|
|
34
|
+for i in range(NumberOfFailures+1):
|
|
35
|
+ datafiles.append([])
|
34
|
36
|
|
35
|
|
-df=pd.concat(df_list)
|
36
|
|
-datalength=df.shape[0]
|
37
|
|
-# subsampled to 5' = 30 * 10"
|
38
|
|
-# We consider smaples every 5' because in production, we will only have data at this frequency
|
39
|
|
-subsamplingrate=30
|
40
|
|
-subsamplingrate=30
|
|
37
|
+# Next set of ddata corresponds to Freezer, SP=-26
|
|
38
|
+datafiles[0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_','2025-01-27_5_']
|
|
39
|
+datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
|
|
40
|
+datafiles[2]=['2024-12-18_5_','2024-12-19_5_']
|
|
41
|
+datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
|
|
42
|
+datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
|
|
43
|
+#datafiles[4]=[]
|
41
|
44
|
|
|
45
|
+# Features suggested by Xavier
|
|
46
|
+# Care with 'tc s3' because on datafiles[0] is always nulll
|
|
47
|
+# Seems to be incoropored in new tests
|
42
|
48
|
|
43
|
|
-normaldataframe=df.iloc[range(0,datalength,subsamplingrate)][features]
|
44
|
|
-normaldataframe.reset_index(inplace=True,drop=True)
|
|
49
|
+features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
|
|
50
|
+#features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
|
45
|
51
|
|
|
52
|
+#features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
|
|
53
|
+
|
|
54
|
+NumFeatures=len(features)
|
46
|
55
|
|
47
|
56
|
df_list=[]
|
48
|
|
-for f in anormal_datafiles_list:
|
49
|
|
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
|
50
|
|
- df1 = pd.read_csv('./data/'+f+'.csv')
|
51
|
|
- df_list.append(df1)
|
|
57
|
+for i in range(NumberOfFailures+1):
|
|
58
|
+ df_list.append([])
|
52
|
59
|
|
53
|
|
-df=pd.concat(df_list)
|
54
|
|
-datalength=df.shape[0]
|
55
|
|
-# subsampled to 5' = 30 * 10"
|
56
|
|
-anormaldataframe=df.iloc[range(0,datalength,subsamplingrate)][features]
|
57
|
|
-anormaldataframe.reset_index(inplace=True,drop=True)
|
|
60
|
+for i in range(NumberOfFailures+1):
|
|
61
|
+ dftemp=[]
|
|
62
|
+ for f in datafiles[i]:
|
|
63
|
+ print(" ", f)
|
|
64
|
+ #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
|
|
65
|
+ df1 = pd.read_csv('./data/'+f+'.csv')
|
|
66
|
+ dftemp.append(df1)
|
|
67
|
+ df_list[i]=pd.concat(dftemp)
|
58
|
68
|
|
59
|
69
|
|
60
|
|
-# Train data is first 2/3 of normaldata
|
61
|
|
-# Test data is: last 1/3 of normaldata + anormaldata + last 1/3 of normaldata
|
62
|
|
-dataTrain=normaldataframe.values[0:int(normaldataframe.shape[0]*2/3),:]
|
63
|
|
-dataTest=np.vstack((normaldataframe.values[int(normaldataframe.shape[0]*2/3)+1:,:],anormaldataframe.values, normaldataframe.values[int(normaldataframe.shape[0]*2/3)+1:,:] ))
|
|
70
|
+# subsampled to 5' = 30 * 10"
|
|
71
|
+# We consider smaples every 5' because in production, we will only have data at this frequency
|
|
72
|
+subsamplingrate=30
|
64
|
73
|
|
|
74
|
+dataframe=[]
|
|
75
|
+for i in range(NumberOfFailures+1):
|
|
76
|
+ dataframe.append([])
|
|
77
|
+
|
|
78
|
+for i in range(NumberOfFailures+1):
|
|
79
|
+ datalength=df_list[i].shape[0]
|
|
80
|
+ dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
|
|
81
|
+ dataframe[i].reset_index(inplace=True,drop=True)
|
|
82
|
+ dataframe[i].dropna(inplace=True)
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+# Train data is first 2/3 of data
|
|
86
|
+# Test data is: last 1/3 of data
|
|
87
|
+dataTrain=[]
|
|
88
|
+dataTest=[]
|
|
89
|
+for i in range(NumberOfFailures+1):
|
|
90
|
+ dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
|
|
91
|
+ dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
|
|
92
|
+
|
|
93
|
+# Calculate means and stdev
|
|
94
|
+a=dataTrain[0]
|
|
95
|
+for i in range(1,NumberOfFailures+1):
|
|
96
|
+ a=np.vstack((a,dataTrain[i]))
|
|
97
|
+
|
|
98
|
+means=a.mean(axis=0)
|
|
99
|
+stdevs=a.std(axis=0)
|
|
100
|
+def normalize2(train,test):
|
|
101
|
+ return( (train-means)/stdevs, (test-means)/stdevs )
|
|
102
|
+
|
|
103
|
+dataTrainNorm=[]
|
|
104
|
+dataTestNorm=[]
|
|
105
|
+for i in range(NumberOfFailures+1):
|
|
106
|
+ dataTrainNorm.append([])
|
|
107
|
+ dataTestNorm.append([])
|
|
108
|
+
|
|
109
|
+for i in range(NumberOfFailures+1):
|
|
110
|
+ (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
|
|
111
|
+
|
|
112
|
+def plotData():
|
|
113
|
+ fig, axes = plt.subplots(
|
|
114
|
+ nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
115
|
+ )
|
|
116
|
+ for i in range(NumberOfFailures+1):
|
|
117
|
+ axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
|
|
118
|
+ axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
|
|
119
|
+ #axes[1].legend()
|
|
120
|
+ #axes[0].set_ylabel(features[0])
|
|
121
|
+ #axes[1].set_ylabel(features[1])
|
|
122
|
+ plt.show()
|
65
|
123
|
|
66
|
|
-def normalize2():
|
67
|
|
- # merges train and test
|
68
|
|
- means=[]
|
69
|
|
- stdevs=[]
|
70
|
|
- for i in range(NumFeatures):
|
71
|
|
- means.append(dataTrain[:,i].mean())
|
72
|
|
- stdevs.append(dataTrain[:,i].std())
|
73
|
|
- return( (dataTrain-means)/stdevs, (dataTest-means)/stdevs )
|
|
124
|
+#plotData()
|
|
125
|
+#exit(0)
|
74
|
126
|
|
75
|
|
-(dataTrainNorm,dataTestNorm)=normalize2()
|
76
|
127
|
|
77
|
|
-TIME_STEPS = 24
|
|
128
|
+NumFilters=64
|
|
129
|
+KernelSize=7
|
|
130
|
+DropOut=0.2
|
|
131
|
+ThresholdFactor=1.4
|
|
132
|
+TIME_STEPS = 12 # This is a trade off among better performance (high) and better response delay (low)
|
78
|
133
|
def create_sequences(values, time_steps=TIME_STEPS):
|
79
|
134
|
output = []
|
80
|
135
|
for i in range(len(values) - time_steps + 1):
|
81
|
136
|
output.append(values[i : (i + time_steps)])
|
82
|
137
|
return np.stack(output)
|
83
|
138
|
|
84
|
|
-x_train = create_sequences(dataTrainNorm)
|
|
139
|
+x_train=[]
|
|
140
|
+for i in range(NumberOfFailures+1):
|
|
141
|
+ x_train.append(create_sequences(dataTrainNorm[i]))
|
|
142
|
+
|
85
|
143
|
|
|
144
|
+# Reused code from v1_multifailure for only one model. No classification
|
|
145
|
+#for i in range(NumberOfFailures+1):
|
86
|
146
|
model = keras.Sequential(
|
87
|
147
|
[
|
88
|
|
- layers.Input(shape=(x_train.shape[1], x_train.shape[2])),
|
|
148
|
+ layers.Input(shape=(x_train[0].shape[1], x_train[0].shape[2])),
|
89
|
149
|
layers.Conv1D(
|
90
|
|
- filters=64,
|
91
|
|
- kernel_size=7,
|
|
150
|
+ filters=NumFilters,
|
|
151
|
+ kernel_size=KernelSize,
|
92
|
152
|
padding="same",
|
93
|
153
|
strides=2,
|
94
|
154
|
activation="relu",
|
95
|
155
|
),
|
96
|
|
- layers.Dropout(rate=0.2),
|
|
156
|
+ layers.Dropout(rate=DropOut),
|
97
|
157
|
layers.Conv1D(
|
98
|
|
- filters=32,
|
99
|
|
- kernel_size=7,
|
|
158
|
+ filters=int(NumFilters/2),
|
|
159
|
+ kernel_size=KernelSize,
|
100
|
160
|
padding="same",
|
101
|
161
|
strides=2,
|
102
|
162
|
activation="relu",
|
103
|
163
|
),
|
104
|
164
|
layers.Conv1DTranspose(
|
105
|
|
- filters=32,
|
106
|
|
- kernel_size=7,
|
|
165
|
+ filters=int(NumFilters/2),
|
|
166
|
+ kernel_size=KernelSize,
|
107
|
167
|
padding="same",
|
108
|
168
|
strides=2,
|
109
|
169
|
activation="relu",
|
110
|
170
|
),
|
111
|
|
- layers.Dropout(rate=0.2),
|
|
171
|
+ layers.Dropout(rate=DropOut),
|
112
|
172
|
layers.Conv1DTranspose(
|
113
|
|
- filters=64,
|
114
|
|
- kernel_size=7,
|
|
173
|
+ filters=NumFilters,
|
|
174
|
+ kernel_size=KernelSize,
|
115
|
175
|
padding="same",
|
116
|
176
|
strides=2,
|
117
|
177
|
activation="relu",
|
118
|
178
|
),
|
119
|
|
- layers.Conv1DTranspose(filters=x_train.shape[2], kernel_size=7, padding="same"),
|
|
179
|
+ layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"),
|
120
|
180
|
]
|
121
|
181
|
)
|
122
|
182
|
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
|
123
|
183
|
model.summary()
|
124
|
|
-
|
125
|
|
-path_checkpoint = "model._checkpoint.weights.h5"
|
126
|
|
-es_callback = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)
|
127
|
|
-
|
128
|
|
-modelckpt_callback = keras.callbacks.ModelCheckpoint(
|
129
|
|
- monitor="val_loss",
|
130
|
|
- filepath=path_checkpoint,
|
131
|
|
- verbose=1,
|
132
|
|
- save_weights_only=True,
|
133
|
|
- save_best_only=True,
|
134
|
|
-)
|
|
184
|
+path_checkpoint="model_noclass_v2_checkpoint.weights.h5"
|
|
185
|
+es_callback=keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)
|
|
186
|
+modelckpt_callback=keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint, verbose=1, save_weights_only=True, save_best_only=True,)
|
135
|
187
|
|
136
|
188
|
|
137
|
189
|
if options.train:
|
138
|
|
- history = model.fit(
|
139
|
|
- x_train,
|
140
|
|
- x_train,
|
141
|
|
- epochs=400,
|
142
|
|
- batch_size=128,
|
143
|
|
- validation_split=0.3,
|
144
|
|
- callbacks=[ es_callback, modelckpt_callback ],
|
145
|
|
- )
|
146
|
|
-
|
147
|
|
- plt.plot(history.history["loss"], label="Training Loss")
|
148
|
|
- plt.plot(history.history["val_loss"], label="Validation Loss")
|
149
|
|
- plt.legend()
|
150
|
|
- plt.show()
|
|
190
|
+ history=model.fit( x_train[0], x_train[0], epochs=400, batch_size=128, validation_split=0.3, callbacks=[ es_callback, modelckpt_callback ],)
|
151
|
191
|
else:
|
152
|
192
|
model.load_weights(path_checkpoint)
|
153
|
193
|
|
154
|
194
|
|
155
|
|
-x_train_pred = model.predict(x_train)
|
156
|
|
-train_mae_loss = np.mean(np.abs(x_train_pred - x_train), axis=1)
|
157
|
|
-threshold = np.max(train_mae_loss,axis=0)
|
|
195
|
+x_train_pred=model.predict(x_train[0])
|
|
196
|
+train_mae_loss=np.mean(np.abs(x_train_pred - x_train[0]), axis=1)
|
|
197
|
+threshold=np.max(train_mae_loss,axis=0)
|
|
198
|
+thresholdOrig=copy.deepcopy(threshold)
|
158
|
199
|
|
159
|
200
|
print("Threshold : ",threshold)
|
160
|
|
-threshold=threshold*2
|
|
201
|
+threshold=threshold*ThresholdFactor
|
161
|
202
|
# Threshold is enlarged because, otherwise, for subsamples at 5' have many false positives
|
162
|
203
|
|
163
|
|
-x_test = create_sequences(dataTestNorm)
|
|
204
|
+
|
|
205
|
+# 1st scenario. Detect only anomaly. Later, we will classiffy it
|
|
206
|
+# Test data= testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
|
|
207
|
+#d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4],dataTestNorm[0]))
|
|
208
|
+d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]))
|
|
209
|
+
|
|
210
|
+x_test = create_sequences(d)
|
164
|
211
|
x_test_pred = model.predict(x_test)
|
165
|
212
|
test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
166
|
213
|
|
|
214
|
+
|
|
215
|
+# Define ranges for plotting in different colors
|
|
216
|
+testRanges=[]
|
|
217
|
+r=dataTestNorm[0].shape[0]
|
|
218
|
+testRanges.append([0,r])
|
|
219
|
+for i in range(1,NumberOfFailures+1):
|
|
220
|
+ rnext=r+dataTestNorm[i].shape[0]
|
|
221
|
+ testRanges.append([r,rnext] )
|
|
222
|
+ r=rnext
|
|
223
|
+
|
|
224
|
+# Drop the last TIME_STEPS for plotting
|
|
225
|
+testRanges[NumberOfFailures][1]=testRanges[NumberOfFailures][1]-TIME_STEPS
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+def AtLeastOneTrue(x):
|
|
229
|
+ for i in range(NumFeatures):
|
|
230
|
+ if x[i]:
|
|
231
|
+ return True
|
|
232
|
+ return False
|
|
233
|
+
|
167
|
234
|
anomalies = test_mae_loss > threshold
|
168
|
235
|
anomalous_data_indices = []
|
169
|
236
|
for i in range(anomalies.shape[0]):
|
170
|
|
- if anomalies[i][0] or anomalies[i][1]:
|
|
237
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
238
|
+ #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
|
171
|
239
|
anomalous_data_indices.append(i)
|
172
|
240
|
|
173
|
|
-#print(anomalous_data_indices)
|
|
241
|
+# Let's plot some features
|
174
|
242
|
|
|
243
|
+colorline=['violet','lightcoral','cyan','lime','grey']
|
|
244
|
+colordot=['darkviolet','red','blue','green','black']
|
175
|
245
|
|
176
|
|
-# Let's plot only a couple of features
|
177
|
|
-def plotData2():
|
|
246
|
+#featuresToPlot=['r1 s1','r1 s2','r1 s3','pa1 apiii']
|
|
247
|
+featuresToPlot=features
|
|
248
|
+
|
|
249
|
+indexesToPlot=[]
|
|
250
|
+for i in featuresToPlot:
|
|
251
|
+ indexesToPlot.append(features.index(i))
|
|
252
|
+
|
|
253
|
+def plotData3():
|
|
254
|
+ NumFeaturesToPlot=len(indexesToPlot)
|
|
255
|
+ plt.rcParams.update({'font.size': 16})
|
178
|
256
|
fig, axes = plt.subplots(
|
179
|
|
- nrows=2, ncols=1, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
257
|
+ nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
180
|
258
|
)
|
181
|
|
- axes[0].plot(range(len(x_train)),x_train[:,0,0],label="normal")
|
182
|
|
- axes[0].plot(range(len(x_train),len(x_train)+len(x_test)),x_test[:,0,0],label="abnormal")
|
183
|
|
- axes[0].plot(len(x_train)+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,0],color='red',marker='.',linewidth=0,label="abnormal detection")
|
184
|
|
- axes[0].legend()
|
185
|
|
- axes[1].plot(range(len(x_train)),x_train[:,0,1],label="normal")
|
186
|
|
- axes[1].plot(range(len(x_train),len(x_train)+len(x_test)),x_test[:,0,1],label="abnormal")
|
187
|
|
- axes[1].plot(len(x_train)+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,1],color='red',marker='.',linewidth=0,label="abnormal detection")
|
188
|
|
- axes[1].legend()
|
189
|
|
- axes[0].set_ylabel(features[0])
|
190
|
|
- axes[1].set_ylabel(features[1])
|
|
259
|
+ for i in range(NumFeaturesToPlot):
|
|
260
|
+ init=0
|
|
261
|
+ end=testRanges[0][1]
|
|
262
|
+ axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],label="No fail")
|
|
263
|
+ init=end
|
|
264
|
+ end+=(testRanges[1][1]-testRanges[1][0])
|
|
265
|
+ for j in range(1,NumberOfFailures+1):
|
|
266
|
+ axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]],label="Fail type "+str(j), color=colorline[j-1])
|
|
267
|
+ if j<NumberOfFailures:
|
|
268
|
+ init=end
|
|
269
|
+ end+=(testRanges[j+1][1]-testRanges[j+1][0])
|
|
270
|
+ x=[]
|
|
271
|
+ y=[]
|
|
272
|
+ for k in anomalous_data_indices:
|
|
273
|
+ if (k+TIME_STEPS)<x_test.shape[0]:
|
|
274
|
+ x.append(k+TIME_STEPS)
|
|
275
|
+ y.append(x_test[k+TIME_STEPS,0,indexesToPlot[i]])
|
|
276
|
+ axes[i].plot(x,y ,color='grey',marker='.',linewidth=0,label="Fail detection" )
|
|
277
|
+
|
|
278
|
+ if i==0:
|
|
279
|
+ axes[i].legend(bbox_to_anchor=(0.9, 0.4))
|
|
280
|
+ axes[i].set_ylabel(features[indexesToPlot[i]])
|
|
281
|
+ axes[i].grid()
|
|
282
|
+ axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
|
191
|
283
|
plt.show()
|
192
|
284
|
|
193
|
|
-plotData2()
|
194
|
285
|
|
|
286
|
+def anomalyMetric(testList): # first of list is non failure data
|
|
287
|
+ # FP, TP: false/true positive
|
|
288
|
+ # TN, FN: true/false negative
|
|
289
|
+ # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
|
|
290
|
+ # Specificity: true negative ratio given data is OK: TN/(TN+FP)
|
|
291
|
+ # Accuracy: Rate of correct predictions: (TN+TP)/(TN+TP+FP+FN)
|
|
292
|
+ # Precision: Rate of positive results: TP/(TP+FP)
|
|
293
|
+ # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
|
|
294
|
+ # F2-score: predictive performance measure: 2*Specificity*Sensitity/(Specificity+Sensitity)
|
|
295
|
+
|
|
296
|
+ x_test = create_sequences(testList[0])
|
|
297
|
+ x_test_pred = model.predict(x_test)
|
|
298
|
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
299
|
+ anomalies = test_mae_loss > threshold
|
|
300
|
+ count=0
|
|
301
|
+ for i in range(anomalies.shape[0]):
|
|
302
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
303
|
+ count+=1
|
|
304
|
+ FP=count
|
|
305
|
+ TN=anomalies.shape[0]-count
|
|
306
|
+ count=0
|
|
307
|
+ TP=np.zeros((NumberOfFailures))
|
|
308
|
+ FN=np.zeros((NumberOfFailures))
|
|
309
|
+ Sensitivity=np.zeros((NumberOfFailures))
|
|
310
|
+ Precision=np.zeros((NumberOfFailures))
|
|
311
|
+ for i in range(1,len(testList)):
|
|
312
|
+ x_test = create_sequences(testList[i])
|
|
313
|
+ x_test_pred = model.predict(x_test)
|
|
314
|
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
315
|
+ anomalies = test_mae_loss > threshold
|
|
316
|
+ count=0
|
|
317
|
+ for j in range(anomalies.shape[0]):
|
|
318
|
+ if AtLeastOneTrue(anomalies[j]):
|
|
319
|
+ count+=1
|
|
320
|
+ TP[i-1] = count
|
|
321
|
+ FN[i-1] = anomalies.shape[0]-count
|
|
322
|
+ Sensitivity[i-1]=TP[i-1]/(TP[i-1]+FN[i-1])
|
|
323
|
+ Precision[i-1]=TP[i-1]/(TP[i-1]+FP)
|
|
324
|
+
|
|
325
|
+ GlobalSensitivity=TP.sum()/(TP.sum()+FN.sum())
|
|
326
|
+ Specificity=TN/(TN+FP)
|
|
327
|
+ Accuracy=(TN+TP.sum())/(TN+TP.sum()+FP+FN.sum())
|
|
328
|
+ GlobalPrecision=TP.sum()/(TP.sum()+FP)
|
|
329
|
+ F1Score= 2*GlobalPrecision*GlobalSensitivity/(GlobalPrecision+GlobalSensitivity)
|
|
330
|
+ F2Score = 2*Specificity*GlobalSensitivity/(Specificity+GlobalSensitivity)
|
|
331
|
+
|
|
332
|
+ print("Sensitivity: ",Sensitivity)
|
|
333
|
+ print("Global Sensitivity: ",GlobalSensitivity)
|
|
334
|
+ print("Precision: ",Precision)
|
|
335
|
+ print("Global Precision: ",GlobalPrecision)
|
|
336
|
+ print("Specifity: ",Specificity)
|
|
337
|
+ print("Accuracy: ",Accuracy)
|
|
338
|
+ print("F1Score: ",F1Score)
|
|
339
|
+ print("F2Score: ",F2Score)
|
|
340
|
+ print("FP: ",FP)
|
|
341
|
+ #return Sensitivity+Specifity
|
|
342
|
+ return (F1Score,F2Score)
|
|
343
|
+
|
|
344
|
+anomalyMetric([dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]])
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+def plotFScore():
|
|
348
|
+ global threshold
|
|
349
|
+ res=[]
|
|
350
|
+ # plots FSCroe as a function of Threshold Factor
|
|
351
|
+ tf=0.3
|
|
352
|
+ while tf<1.5:
|
|
353
|
+ threshold=thresholdOrig*tf
|
|
354
|
+ r=anomalyMetric([dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]])
|
|
355
|
+ res.append([tf,r[0],r[1]])
|
|
356
|
+ tf+=0.05
|
|
357
|
+
|
|
358
|
+ print(res)
|
|
359
|
+ ar=np.array((res))
|
|
360
|
+ plt.rcParams.update({'font.size': 16})
|
|
361
|
+ fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(14, 10), dpi=80, facecolor="w", edgecolor="k")
|
|
362
|
+ ln1=axes.plot(ar[:,0],ar[:,1],label="F1-Score",linewidth=4)
|
|
363
|
+ ax1=axes.twinx()
|
|
364
|
+ ln2=ax1.plot(ar[:,0],ar[:,2],label="F2-Score",linewidth=4,color='C3')
|
|
365
|
+ axes.set_xlabel("Threshold factor")
|
|
366
|
+ axes.set_ylabel("F1-Score")
|
|
367
|
+ ax1.set_ylabel("F2-Score")
|
|
368
|
+ lns = ln1+ln2
|
|
369
|
+ labs = [l.get_label() for l in lns]
|
|
370
|
+ axes.legend(lns, labs, loc=0)
|
|
371
|
+ axes.grid()
|
|
372
|
+ plt.show()
|
|
373
|
+
|
|
374
|
+#plotFScore()
|
|
375
|
+plotData3()
|
|
376
|
+
|
|
377
|
+exit(0)
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+# 2nd scenario. Detect only anomaly. Later, we will classiffy it
|
|
382
|
+# Test data= testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
|
|
383
|
+#d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4],dataTestNorm[0]))
|
|
384
|
+num=100
|
|
385
|
+d=np.vstack((dataTestNorm[0][0:num,:],dataTestNorm[1][0:num,:],dataTestNorm[0][num:2*num,:],dataTestNorm[2][70:70+num,:],dataTestNorm[0][2*num-90:3*num-90,:],dataTestNorm[3][50:num+50,:],dataTestNorm[0][150:150+num,:],dataTestNorm[4][0:num+TIME_STEPS,:]))
|
|
386
|
+
|
|
387
|
+x_test = create_sequences(d)
|
|
388
|
+x_test_pred = model.predict(x_test)
|
|
389
|
+test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
390
|
+
|
|
391
|
+
|
|
392
|
+anomalies = test_mae_loss > threshold
|
|
393
|
+anomalous_data_indices = []
|
|
394
|
+for i in range(anomalies.shape[0]):
|
|
395
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
396
|
+ #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
|
|
397
|
+ anomalous_data_indices.append(i)
|
|
398
|
+
|
|
399
|
+def plotData4():
|
|
400
|
+ NumFeaturesToPlot=len(indexesToPlot)
|
|
401
|
+ plt.rcParams.update({'font.size': 16})
|
|
402
|
+ fig, axes = plt.subplots(
|
|
403
|
+ nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
404
|
+ )
|
|
405
|
+ for i in range(NumFeaturesToPlot):
|
|
406
|
+ for j in range(1,NumberOfFailures+1):
|
|
407
|
+ if j==1:
|
|
408
|
+ axes[i].plot(range((j-1)*2*num,(j-1)*2*num+num),x_test[(j-1)*2*num:(j-1)*2*num+num,0,indexesToPlot[i]],label="No fail", color='C0')
|
|
409
|
+ else:
|
|
410
|
+ axes[i].plot(range((j-1)*2*num,(j-1)*2*num+num),x_test[(j-1)*2*num:(j-1)*2*num+num,0,indexesToPlot[i]], color='C0')
|
|
411
|
+ axes[i].plot(range(j*2*num-num,j*2*num),x_test[j*2*num-num:j*2*num,0,indexesToPlot[i]],label="File type "+str(j),color=colorline[j-1])
|
|
412
|
+ x=[]
|
|
413
|
+ y=[]
|
|
414
|
+ for k in anomalous_data_indices:
|
|
415
|
+ if (k+TIME_STEPS)<x_test.shape[0]:
|
|
416
|
+ x.append(k+TIME_STEPS)
|
|
417
|
+ y.append(x_test[k+TIME_STEPS,0,indexesToPlot[i]])
|
|
418
|
+ axes[i].plot(x,y ,color='grey',marker='.',linewidth=0,label="Fail detection" )
|
|
419
|
+
|
|
420
|
+ if i==0:
|
|
421
|
+ axes[i].legend(bbox_to_anchor=(0.9, 0.4))
|
|
422
|
+ axes[i].set_ylabel(features[indexesToPlot[i]])
|
|
423
|
+ axes[i].grid()
|
|
424
|
+ axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
|
|
425
|
+ plt.show()
|
195
|
426
|
|
196
|
427
|
|
|
428
|
+plotData4()
|