cesar 1 day ago
parent
commit
5a503d44ff
2 changed files with 696 additions and 0 deletions
  1. 348
    0
      v1_multifailure.py
  2. 348
    0
      v1_multifailure_importance_analysis.py

+ 348
- 0
v1_multifailure.py View File

1
+# Csar Fdez, UdL, 2025
2
+import pandas as pd
3
+import matplotlib.pyplot as plt
4
+import datetime
5
+import numpy as np
6
+import keras
7
+import os.path
8
+import pickle
9
+from keras import layers
10
+from optparse import OptionParser
11
+
12
+
13
+parser = OptionParser()
14
+parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
15
+
16
+(options, args) = parser.parse_args()
17
+
18
+
19
+# data files arrays. Index:
20
+# 0.  No failure
21
+# 1.  Blocked evaporator
22
+# 2.   Full Blocked condenser
23
+# 3.   Partial Blocked condenser
24
+# 4   Fan condenser not working
25
+# 5.  Open door
26
+
27
+
28
+NumberOfFailures=5
29
+NumberOfFailures=4  # So far, we have only data for the first 4 types of failures
30
+datafiles=[]
31
+for i in range(NumberOfFailures+1):
32
+    datafiles.append([])
33
+
34
+# Next set of ddata corresponds to Freezer, SP=-26
35
+datafiles[0]=['2024-08-07_5_','2024-08-08_5_'] 
36
+datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] 
37
+datafiles[2]=['2024-12-18_5_','2024-12-19_5_'] 
38
+datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_'] 
39
+datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_'] 
40
+#datafiles[4]=[] 
41
+
42
+# Features suggested by Xavier
43
+features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
44
+features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2','tc s3']
45
+NumFeatures=len(features)
46
+
47
+df_list=[]
48
+for i in range(NumberOfFailures+1):
49
+    df_list.append([])
50
+
51
+for i in range(NumberOfFailures+1):
52
+    dftemp=[]
53
+    for f in datafiles[i]:
54
+        print("                 ", f)
55
+        #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
56
+        df1 = pd.read_csv('./data/'+f+'.csv')
57
+        dftemp.append(df1)
58
+    df_list[i]=pd.concat(dftemp)
59
+
60
+
61
+# subsampled to 5'  =  30 * 10"
62
+# We consider smaples every 5' because in production, we will only have data at this frequency
63
+subsamplingrate=30
64
+
65
+dataframe=[]
66
+for i in range(NumberOfFailures+1):
67
+    dataframe.append([])
68
+
69
+for i in range(NumberOfFailures+1):
70
+    datalength=df_list[i].shape[0]
71
+    dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
72
+    dataframe[i].reset_index(inplace=True,drop=True)
73
+    dataframe[i].dropna(inplace=True)
74
+
75
+
76
+# Train data is first 2/3 of data
77
+# Test data is: last 1/3 of data 
78
+dataTrain=[]
79
+dataTest=[]
80
+for i in range(NumberOfFailures+1):
81
+    dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
82
+    dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
83
+
84
+
85
+def normalize2(train,test):
86
+    # merges train and test
87
+    means=[]
88
+    stdevs=[]
89
+    for i in range(NumFeatures):
90
+        means.append(train[:,i].mean())
91
+        stdevs.append(train[:,i].std())
92
+    return( (train-means)/stdevs, (test-means)/stdevs )
93
+
94
+dataTrainNorm=[]
95
+dataTestNorm=[]
96
+for i in range(NumberOfFailures+1):
97
+    dataTrainNorm.append([])
98
+    dataTestNorm.append([])
99
+
100
+for i in range(NumberOfFailures+1):
101
+    (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
102
+
103
+def plotData():    
104
+    fig, axes = plt.subplots(
105
+        nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
106
+    )
107
+    for i in range(NumberOfFailures+1):
108
+        axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+",  feature 0")
109
+        axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+",  feature 1")
110
+    #axes[1].legend()
111
+    #axes[0].set_ylabel(features[0])
112
+    #axes[1].set_ylabel(features[1])
113
+    plt.show()
114
+
115
+#plotData()
116
+
117
+
118
+TIME_STEPS = 12
119
+def create_sequences(values, time_steps=TIME_STEPS):
120
+    output = []
121
+    for i in range(len(values) - time_steps + 1):
122
+        output.append(values[i : (i + time_steps)])
123
+    return np.stack(output)
124
+
125
+x_train=[]
126
+for i in range(NumberOfFailures+1):
127
+    x_train.append(create_sequences(dataTrainNorm[i]))
128
+
129
+
130
+model=[]
131
+modelckpt_callback =[]
132
+es_callback =[]
133
+path_checkpoint=[]
134
+for i in range(NumberOfFailures+1):
135
+    model.append([])
136
+    model[i] = keras.Sequential(
137
+        [
138
+            layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])),
139
+            layers.Conv1D(
140
+                filters=64,
141
+                kernel_size=7,
142
+                padding="same",
143
+                strides=2,
144
+                activation="relu",
145
+            ),
146
+            layers.Dropout(rate=0.2),
147
+            layers.Conv1D(
148
+                filters=32,
149
+                kernel_size=7,
150
+                padding="same",
151
+                strides=2,
152
+                activation="relu",
153
+            ),
154
+            layers.Conv1DTranspose(
155
+                filters=32,
156
+                kernel_size=7,
157
+                padding="same",
158
+                strides=2,
159
+                activation="relu",
160
+            ),
161
+            layers.Dropout(rate=0.2),
162
+            layers.Conv1DTranspose(
163
+                filters=64,
164
+                kernel_size=7,
165
+                padding="same",
166
+                strides=2,
167
+                activation="relu",
168
+            ),
169
+            layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=7, padding="same"),
170
+        ]
171
+    )
172
+    model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
173
+    model[i].summary()
174
+    path_checkpoint.append("model_v1_"+str(i)+"._checkpoint.weights.h5")
175
+    es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15))
176
+    modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,))
177
+
178
+
179
+if options.train:
180
+    history=[]
181
+    for i in range(NumberOfFailures+1):
182
+        history.append(model[i].fit( x_train[i], x_train[i], epochs=400, batch_size=128, validation_split=0.3, callbacks=[  es_callback[i], modelckpt_callback[i]      ],))
183
+
184
+    fig, axes = plt.subplots(
185
+        nrows=int(np.ceil((NumberOfFailures+1)/2)), ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
186
+    )
187
+    for i in range(int(np.ceil((NumberOfFailures+1)/2))):
188
+        for j in range(2):
189
+            r=2*i+j
190
+            if r < NumberOfFailures+1:
191
+                axes[i][j].plot(history[r].history["loss"], label="Training Loss")
192
+                axes[i][j].plot(history[r].history["val_loss"], label="Val Loss")
193
+                axes[i][j].legend()
194
+    plt.show()
195
+else:
196
+    for i in range(NumberOfFailures+1):
197
+        model[i].load_weights(path_checkpoint[i])
198
+
199
+
200
+x_train_pred=[]
201
+train_mae_loss=[]
202
+threshold=[]
203
+for i in range(NumberOfFailures+1):
204
+    x_train_pred.append(model[i].predict(x_train[i]))
205
+    train_mae_loss.append(np.mean(np.abs(x_train_pred[i] - x_train[i]), axis=1))
206
+    threshold.append(np.max(train_mae_loss[i],axis=0))
207
+
208
+print("Threshold : ",threshold)
209
+for i in range(NumberOfFailures+1):
210
+    threshold[i]=threshold[i]*1.7
211
+# Threshold is enlarged because, otherwise, for subsamples at 5' have many false positives
212
+
213
+
214
+#  1st scenario. Detect only anomaly.  Later, we will classiffy it
215
+# Test data=  testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
216
+d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4],dataTestNorm[0]))
217
+
218
+x_test = create_sequences(d)
219
+x_test_pred = model[0].predict(x_test)
220
+test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
221
+
222
+
223
+# Define ranges for plotting in different colors
224
+testRanges=[]
225
+r=dataTestNorm[0].shape[0]
226
+testRanges.append([0,r])
227
+for i in range(1,NumberOfFailures+1):
228
+    rnext=r+dataTestNorm[i].shape[0]
229
+    testRanges.append([r,rnext] )
230
+    r=rnext
231
+testRanges.append([r, x_test.shape[0]  ])
232
+
233
+
234
+def AtLeastOneTrue(x):
235
+    for i in range(NumFeatures):
236
+        if x[i]:
237
+            return True
238
+    return False
239
+
240
+anomalies = test_mae_loss > threshold[0]
241
+anomalous_data_indices = []
242
+for i in range(anomalies.shape[0]):
243
+    if AtLeastOneTrue(anomalies[i]):
244
+    #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
245
+        anomalous_data_indices.append(i)
246
+
247
+#print(anomalous_data_indices)
248
+
249
+
250
+# Let's plot only a couple of features
251
+def plotData2():    
252
+    fig, axes = plt.subplots(
253
+        nrows=2, ncols=1, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
254
+    )
255
+    axes[0].plot(range(len(x_train[0])),x_train[0][:,0,0],label="normal")
256
+    axes[0].plot(range(len(x_train[0]),len(x_train[0])+len(x_test)),x_test[:,0,0],label="abnormal")
257
+    axes[0].plot(len(x_train[0])+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,0],color='red',marker='.',linewidth=0,label="abnormal detection")
258
+    axes[0].legend()
259
+    axes[1].plot(range(len(x_train[0])),x_train[0][:,0,1],label="normal")
260
+    axes[1].plot(range(len(x_train[0]),len(x_train[0])+len(x_test)),x_test[:,0,1],label="abnormal")
261
+    axes[1].plot(len(x_train[0])+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,1],color='red',marker='.',linewidth=0,label="abnormal detection")
262
+    axes[1].legend()
263
+    axes[0].set_ylabel(features[0])
264
+    axes[1].set_ylabel(features[1])
265
+    plt.show()
266
+
267
+#plotData2()
268
+
269
+
270
+#   2nd scenario. Go over anomalies and classify it by less error
271
+'''   
272
+#This code works, but too slow
273
+anomalous_data_type=[]
274
+for i in anomalous_data_indices:
275
+    error=[]
276
+    for m in range(1,NumberOfFailures+1):
277
+        error.append(np.mean(np.mean(np.abs(model[m].predict(x_test[i:i+1,:,:])-x_test[i:i+1,:,:]),axis=1)))
278
+    anomalous_data_type.append(np.argmin(error)+1)
279
+'''
280
+
281
+anomalous_data_type=[]
282
+x_test_predict=[]
283
+for m in range(NumberOfFailures+1):
284
+    x_test_predict.append(model[m].predict(x_test))
285
+
286
+
287
+for i in anomalous_data_indices:
288
+    error=[]
289
+    for m in range(1,NumberOfFailures+1):
290
+        error.append(np.mean(np.mean(np.abs(x_test_predict[m][i:i+1,:,:]-x_test[i:i+1,:,:]),axis=1)))
291
+    anomalous_data_type.append(np.argmin(error)+1)
292
+
293
+
294
+# For plotting purposes
295
+
296
+
297
+anomalous_data_indices_by_failure=[]
298
+for i in range(NumberOfFailures+1):
299
+    anomalous_data_indices_by_failure.append([])
300
+
301
+for i in range(len(anomalous_data_indices)):
302
+    print(i," ",anomalous_data_type[i])
303
+    anomalous_data_indices_by_failure[anomalous_data_type[i]].append(anomalous_data_indices[i])  
304
+
305
+
306
+colorline=['violet','lightcoral','cyan','lime','grey']
307
+colordot=['darkviolet','red','blue','green','black']
308
+
309
+featuresToPlot=['r1 s1','r1 s3','r1 s5','r2 s3','r2 s4','pa1 apiii','tc s1','tc s2','tc s3']
310
+indexesToPlot=[]
311
+for i in featuresToPlot:
312
+    indexesToPlot.append(features.index(i))
313
+
314
+def plotData3():
315
+    NumFeaturesToPlot=len(indexesToPlot)
316
+    fig, axes = plt.subplots(
317
+        nrows=NumFeaturesToPlot, ncols=1, figsize=(25, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
318
+    )
319
+    for i in range(NumFeaturesToPlot):
320
+        init=0
321
+        end=len(x_train[0])
322
+        axes[i].plot(range(init,end),x_train[0][:,0,indexesToPlot[i]],label="normal train")
323
+        #axes.plot(range(len(x_train[0]),len(x_train[0])+len(x_test)),x_test[:,0,0],label="abnormal")
324
+        init=end
325
+        end+=testRanges[0][1]
326
+        axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],label="normal test")
327
+        init=end
328
+        end+=(testRanges[1][1]-testRanges[1][0])
329
+        for j in range(1,NumberOfFailures+1):
330
+            axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]],label="fail type "+str(j), color=colorline[j-1])
331
+            init=end
332
+            end+=(testRanges[j+1][1]-testRanges[j+1][0])
333
+
334
+            axes[i].plot(len(x_train[0])+np.array(anomalous_data_indices_by_failure[j]),x_test[anomalous_data_indices_by_failure[j],0,indexesToPlot[i]],color=colordot[j-1],marker='.',linewidth=0,label="abnormal detection type "+str(j))
335
+
336
+        init=end-(testRanges[NumberOfFailures+1][1]-testRanges[NumberOfFailures+1][0])
337
+        end=init+(testRanges[0][1]-testRanges[0][0])
338
+        axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],color='orange')
339
+
340
+        if i==0:
341
+            axes[i].legend(bbox_to_anchor=(1, 0.5))
342
+        axes[i].set_ylabel(features[indexesToPlot[i]])
343
+        axes[i].grid()
344
+    plt.show()
345
+
346
+
347
+plotData3()
348
+

+ 348
- 0
v1_multifailure_importance_analysis.py View File

1
+# Csar Fdez, UdL, 2025
2
+import pandas as pd
3
+import matplotlib.pyplot as plt
4
+import datetime
5
+import numpy as np
6
+import keras
7
+import os.path
8
+import pickle
9
+from keras import layers
10
+from optparse import OptionParser
11
+
12
+
13
+parser = OptionParser()
14
+parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
15
+
16
+(options, args) = parser.parse_args()
17
+
18
+
19
+# data files arrays. Index:
20
+# 0.  No failure
21
+# 1.  Blocked evaporator
22
+# 2.   Full Blocked condenser
23
+# 3.   Partial Blocked condenser
24
+# 4   Fan condenser not working
25
+# 5.  Open door
26
+
27
+
28
+NumberOfFailures=5
29
+NumberOfFailures=4  # So far, we have only data for the first 4 types of failures
30
+datafiles=[]
31
+for i in range(NumberOfFailures+1):
32
+    datafiles.append([])
33
+
34
+# Next set of ddata corresponds to Freezer, SP=-26
35
+datafiles[0]=['2024-08-07_5_','2024-08-08_5_'] 
36
+datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] 
37
+datafiles[2]=['2024-12-18_5_','2024-12-19_5_'] 
38
+datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_'] 
39
+datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_'] 
40
+#datafiles[4]=[] 
41
+
42
+# Features suggested by Xavier
43
+features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
44
+features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2','tc s3']
45
+NumFeatures=len(features)
46
+
47
+df_list=[]
48
+for i in range(NumberOfFailures+1):
49
+    df_list.append([])
50
+
51
+for i in range(NumberOfFailures+1):
52
+    dftemp=[]
53
+    for f in datafiles[i]:
54
+        print("                 ", f)
55
+        #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
56
+        df1 = pd.read_csv('./data/'+f+'.csv')
57
+        dftemp.append(df1)
58
+    df_list[i]=pd.concat(dftemp)
59
+
60
+
61
+# subsampled to 5'  =  30 * 10"
62
+# We consider smaples every 5' because in production, we will only have data at this frequency
63
+subsamplingrate=30
64
+
65
+dataframe=[]
66
+for i in range(NumberOfFailures+1):
67
+    dataframe.append([])
68
+
69
+for i in range(NumberOfFailures+1):
70
+    datalength=df_list[i].shape[0]
71
+    dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
72
+    dataframe[i].reset_index(inplace=True,drop=True)
73
+    dataframe[i].dropna(inplace=True)
74
+
75
+
76
+# Train data is first 2/3 of data
77
+# Test data is: last 1/3 of data 
78
+dataTrain=[]
79
+dataTest=[]
80
+for i in range(NumberOfFailures+1):
81
+    dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
82
+    dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
83
+
84
+
85
+def normalize2(train,test):
86
+    # merges train and test
87
+    means=[]
88
+    stdevs=[]
89
+    for i in range(NumFeatures):
90
+        means.append(train[:,i].mean())
91
+        stdevs.append(train[:,i].std())
92
+    return( (train-means)/stdevs, (test-means)/stdevs )
93
+
94
+dataTrainNorm=[]
95
+dataTestNorm=[]
96
+for i in range(NumberOfFailures+1):
97
+    dataTrainNorm.append([])
98
+    dataTestNorm.append([])
99
+
100
+for i in range(NumberOfFailures+1):
101
+    (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
102
+
103
+def plotData():    
104
+    fig, axes = plt.subplots(
105
+        nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
106
+    )
107
+    for i in range(NumberOfFailures+1):
108
+        axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+",  feature 0")
109
+        axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+",  feature 1")
110
+    #axes[1].legend()
111
+    #axes[0].set_ylabel(features[0])
112
+    #axes[1].set_ylabel(features[1])
113
+    plt.show()
114
+
115
+#plotData()
116
+
117
+
118
+TIME_STEPS = 12
119
+def create_sequences(values, time_steps=TIME_STEPS):
120
+    output = []
121
+    for i in range(len(values) - time_steps + 1):
122
+        output.append(values[i : (i + time_steps)])
123
+    return np.stack(output)
124
+
125
+x_train=[]
126
+for i in range(NumberOfFailures+1):
127
+    x_train.append(create_sequences(dataTrainNorm[i]))
128
+
129
+
130
+model=[]
131
+modelckpt_callback =[]
132
+es_callback =[]
133
+path_checkpoint=[]
134
+for i in range(NumberOfFailures+1):
135
+    model.append([])
136
+    model[i] = keras.Sequential(
137
+        [
138
+            layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])),
139
+            layers.Conv1D(
140
+                filters=64,
141
+                kernel_size=7,
142
+                padding="same",
143
+                strides=2,
144
+                activation="relu",
145
+            ),
146
+            layers.Dropout(rate=0.2),
147
+            layers.Conv1D(
148
+                filters=32,
149
+                kernel_size=7,
150
+                padding="same",
151
+                strides=2,
152
+                activation="relu",
153
+            ),
154
+            layers.Conv1DTranspose(
155
+                filters=32,
156
+                kernel_size=7,
157
+                padding="same",
158
+                strides=2,
159
+                activation="relu",
160
+            ),
161
+            layers.Dropout(rate=0.2),
162
+            layers.Conv1DTranspose(
163
+                filters=64,
164
+                kernel_size=7,
165
+                padding="same",
166
+                strides=2,
167
+                activation="relu",
168
+            ),
169
+            layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=7, padding="same"),
170
+        ]
171
+    )
172
+    model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
173
+    model[i].summary()
174
+    path_checkpoint.append("model_v1_"+str(i)+"._checkpoint.weights.h5")
175
+    es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15))
176
+    modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,))
177
+
178
+
179
+if options.train:
180
+    history=[]
181
+    for i in range(NumberOfFailures+1):
182
+        history.append(model[i].fit( x_train[i], x_train[i], epochs=400, batch_size=128, validation_split=0.3, callbacks=[  es_callback[i], modelckpt_callback[i]      ],))
183
+
184
+    fig, axes = plt.subplots(
185
+        nrows=int(np.ceil((NumberOfFailures+1)/2)), ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
186
+    )
187
+    for i in range(int(np.ceil((NumberOfFailures+1)/2))):
188
+        for j in range(2):
189
+            r=2*i+j
190
+            if r < NumberOfFailures+1:
191
+                axes[i][j].plot(history[r].history["loss"], label="Training Loss")
192
+                axes[i][j].plot(history[r].history["val_loss"], label="Val Loss")
193
+                axes[i][j].legend()
194
+    plt.show()
195
+else:
196
+    for i in range(NumberOfFailures+1):
197
+        model[i].load_weights(path_checkpoint[i])
198
+
199
+
200
+x_train_pred=[]
201
+train_mae_loss=[]
202
+threshold=[]
203
+for i in range(NumberOfFailures+1):
204
+    x_train_pred.append(model[i].predict(x_train[i]))
205
+    train_mae_loss.append(np.mean(np.abs(x_train_pred[i] - x_train[i]), axis=1))
206
+    threshold.append(np.max(train_mae_loss[i],axis=0))
207
+
208
+print("Threshold : ",threshold)
209
+for i in range(NumberOfFailures+1):
210
+    threshold[i]=threshold[i]*1.7
211
+# Threshold is enlarged because, otherwise, for subsamples at 5' have many false positives
212
+
213
+
214
+#  1st scenario. Detect only anomaly.  Later, we will classiffy it
215
+# Test data=  testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
216
+d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4],dataTestNorm[0]))
217
+
218
+x_test = create_sequences(d)
219
+x_test_pred = model[0].predict(x_test)
220
+test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
221
+
222
+
223
+# Define ranges for plotting in different colors
224
+testRanges=[]
225
+r=dataTestNorm[0].shape[0]
226
+testRanges.append([0,r])
227
+for i in range(1,NumberOfFailures+1):
228
+    rnext=r+dataTestNorm[i].shape[0]
229
+    testRanges.append([r,rnext] )
230
+    r=rnext
231
+testRanges.append([r, x_test.shape[0]  ])
232
+
233
+
234
+def AtLeastOneTrue(x):
235
+    for i in range(NumFeatures):
236
+        if x[i]:
237
+            return True
238
+    return False
239
+
240
+anomalies = test_mae_loss > threshold[0]
241
+anomalous_data_indices = []
242
+for i in range(anomalies.shape[0]):
243
+    if AtLeastOneTrue(anomalies[i]):
244
+    #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
245
+        anomalous_data_indices.append(i)
246
+
247
+#print(anomalous_data_indices)
248
+
249
+
250
+# Let's plot only a couple of features
251
+def plotData2():    
252
+    fig, axes = plt.subplots(
253
+        nrows=2, ncols=1, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
254
+    )
255
+    axes[0].plot(range(len(x_train[0])),x_train[0][:,0,0],label="normal")
256
+    axes[0].plot(range(len(x_train[0]),len(x_train[0])+len(x_test)),x_test[:,0,0],label="abnormal")
257
+    axes[0].plot(len(x_train[0])+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,0],color='red',marker='.',linewidth=0,label="abnormal detection")
258
+    axes[0].legend()
259
+    axes[1].plot(range(len(x_train[0])),x_train[0][:,0,1],label="normal")
260
+    axes[1].plot(range(len(x_train[0]),len(x_train[0])+len(x_test)),x_test[:,0,1],label="abnormal")
261
+    axes[1].plot(len(x_train[0])+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,1],color='red',marker='.',linewidth=0,label="abnormal detection")
262
+    axes[1].legend()
263
+    axes[0].set_ylabel(features[0])
264
+    axes[1].set_ylabel(features[1])
265
+    plt.show()
266
+
267
+#plotData2()
268
+
269
+
270
+#   2nd scenario. Go over anomalies and classify it by less error
271
+'''   
272
+#This code works, but too slow
273
+anomalous_data_type=[]
274
+for i in anomalous_data_indices:
275
+    error=[]
276
+    for m in range(1,NumberOfFailures+1):
277
+        error.append(np.mean(np.mean(np.abs(model[m].predict(x_test[i:i+1,:,:])-x_test[i:i+1,:,:]),axis=1)))
278
+    anomalous_data_type.append(np.argmin(error)+1)
279
+'''
280
+
281
+anomalous_data_type=[]
282
+x_test_predict=[]
283
+for m in range(NumberOfFailures+1):
284
+    x_test_predict.append(model[m].predict(x_test))
285
+
286
+
287
+for i in anomalous_data_indices:
288
+    error=[]
289
+    for m in range(1,NumberOfFailures+1):
290
+        error.append(np.mean(np.mean(np.abs(x_test_predict[m][i:i+1,:,:]-x_test[i:i+1,:,:]),axis=1)))
291
+    anomalous_data_type.append(np.argmin(error)+1)
292
+
293
+
294
+# For plotting purposes
295
+
296
+
297
+anomalous_data_indices_by_failure=[]
298
+for i in range(NumberOfFailures+1):
299
+    anomalous_data_indices_by_failure.append([])
300
+
301
+for i in range(len(anomalous_data_indices)):
302
+    print(i," ",anomalous_data_type[i])
303
+    anomalous_data_indices_by_failure[anomalous_data_type[i]].append(anomalous_data_indices[i])  
304
+
305
+
306
+colorline=['violet','lightcoral','cyan','lime','grey']
307
+colordot=['darkviolet','red','blue','green','black']
308
+
309
+featuresToPlot=['r1 s1','r1 s3','r1 s5','r2 s3','r2 s4','pa1 apiii','tc s1','tc s2','tc s3']
310
+indexesToPlot=[]
311
+for i in featuresToPlot:
312
+    indexesToPlot.append(features.index(i))
313
+
314
+def plotData3():
315
+    NumFeaturesToPlot=len(indexesToPlot)
316
+    fig, axes = plt.subplots(
317
+        nrows=NumFeaturesToPlot, ncols=1, figsize=(25, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
318
+    )
319
+    for i in range(NumFeaturesToPlot):
320
+        init=0
321
+        end=len(x_train[0])
322
+        axes[i].plot(range(init,end),x_train[0][:,0,indexesToPlot[i]],label="normal train")
323
+        #axes.plot(range(len(x_train[0]),len(x_train[0])+len(x_test)),x_test[:,0,0],label="abnormal")
324
+        init=end
325
+        end+=testRanges[0][1]
326
+        axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],label="normal test")
327
+        init=end
328
+        end+=(testRanges[1][1]-testRanges[1][0])
329
+        for j in range(1,NumberOfFailures+1):
330
+            axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]],label="fail type "+str(j), color=colorline[j-1])
331
+            init=end
332
+            end+=(testRanges[j+1][1]-testRanges[j+1][0])
333
+
334
+            axes[i].plot(len(x_train[0])+np.array(anomalous_data_indices_by_failure[j]),x_test[anomalous_data_indices_by_failure[j],0,indexesToPlot[i]],color=colordot[j-1],marker='.',linewidth=0,label="abnormal detection type "+str(j))
335
+
336
+        init=end-(testRanges[NumberOfFailures+1][1]-testRanges[NumberOfFailures+1][0])
337
+        end=init+(testRanges[0][1]-testRanges[0][0])
338
+        axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],color='orange')
339
+
340
+        if i==0:
341
+            axes[i].legend(bbox_to_anchor=(1, 0.5))
342
+        axes[i].set_ylabel(features[indexesToPlot[i]])
343
+        axes[i].grid()
344
+    plt.show()
345
+
346
+
347
+plotData3()
348
+

Powered by TurnKey Linux.