cesar 2 个月前
父节点
当前提交
785131b7bc
共有 4 个文件被更改,包括 15668 次插入11 次删除
  1. 7827
    0
      data/2025-02-12_5_.csv
  2. 7828
    0
      data/2025-02-13_5_.csv
  3. 二进制
      paper/Adapt25_Paper_Template_updated_AKO_v1.docx
  4. 13
    11
      v5_class.py

+ 7827
- 0
data/2025-02-12_5_.csv
文件差异内容过多而无法显示
查看文件


+ 7828
- 0
data/2025-02-13_5_.csv
文件差异内容过多而无法显示
查看文件


二进制
paper/Adapt25_Paper_Template_updated_AKO_v1.docx 查看文件


+ 13
- 11
v5_class.py 查看文件

42
 # 5.  Open door
42
 # 5.  Open door
43
 
43
 
44
 
44
 
45
-NumberOfFailures=3  # So far, we have only data for the first 4 types of failures
45
+NumberOfFailures=4  # So far, we have only data for the first 4 types of failures
46
 datafiles=[[],[]]   # 0 for train,  1 for test
46
 datafiles=[[],[]]   # 0 for train,  1 for test
47
 for i in range(NumberOfFailures+1):
47
 for i in range(NumberOfFailures+1):
48
     datafiles[0].append([])
48
     datafiles[0].append([])
53
 datafiles[0][1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_'] 
53
 datafiles[0][1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_'] 
54
 datafiles[0][2]=['2024-12-18_5_','2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_'] 
54
 datafiles[0][2]=['2024-12-18_5_','2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_'] 
55
 datafiles[0][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_'] 
55
 datafiles[0][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_'] 
56
-#datafiles[0][4]=['2025-02-05_5_','2025-02-10_5_']
56
+datafiles[0][4]=['2025-02-13_5_']
57
 
57
 
58
 if options.transition:
58
 if options.transition:
59
     datafiles[1][0]=['2025-01-27_5_','2025-01-28_5_'] 
59
     datafiles[1][0]=['2025-01-27_5_','2025-01-28_5_'] 
60
     datafiles[1][1]=['2024-12-14_5_','2024-12-15_5_','2024-12-16_5_']  # with TRANSITION
60
     datafiles[1][1]=['2024-12-14_5_','2024-12-15_5_','2024-12-16_5_']  # with TRANSITION
61
     datafiles[1][2]=['2024-12-17_5_','2024-12-19_5_','2024-12-25_5_','2024-12-26_5_'] # with TRANSITION
61
     datafiles[1][2]=['2024-12-17_5_','2024-12-19_5_','2024-12-25_5_','2024-12-26_5_'] # with TRANSITION
62
     datafiles[1][3]=['2024-12-27_5_','2024-12-31_5_','2025-01-01_5_'] # with TRANSITION
62
     datafiles[1][3]=['2024-12-27_5_','2024-12-31_5_','2025-01-01_5_'] # with TRANSITION
63
-    #datafiles[1][4]=['2025-02-05_5_','2025-02-10_5_']
63
+    datafiles[1][4]=['2025-02-12_5_','2025-02-13_5_']
64
 
64
 
65
 else:
65
 else:
66
     datafiles[1][0]=['2025-01-27_5_','2025-01-28_5_'] 
66
     datafiles[1][0]=['2025-01-27_5_','2025-01-28_5_'] 
67
     datafiles[1][1]=['2024-12-14_5_','2024-12-15_5_'] 
67
     datafiles[1][1]=['2024-12-14_5_','2024-12-15_5_'] 
68
     datafiles[1][2]=['2024-12-19_5_','2024-12-25_5_','2024-12-26_5_'] 
68
     datafiles[1][2]=['2024-12-19_5_','2024-12-25_5_','2024-12-26_5_'] 
69
     datafiles[1][3]=['2024-12-31_5_','2025-01-01_5_'] 
69
     datafiles[1][3]=['2024-12-31_5_','2025-01-01_5_'] 
70
-    #datafiles[1][4]=['2025-02-05_5_','2025-02-10_5_']
70
+    datafiles[1][4]=['2025-02-13_5_']
71
  
71
  
72
 
72
 
73
 #datafiles[0][4]=['2025-02-05_5_'] 
73
 #datafiles[0][4]=['2025-02-05_5_'] 
318
 
318
 
319
 
319
 
320
 #   2nd scenario. Go over anomalies and classify it by less error
320
 #   2nd scenario. Go over anomalies and classify it by less error
321
-datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3]]
322
-#datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]]
321
+#datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3]]
322
+datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]]
323
 x_test=create_sequences(datalist[0],int(options.timesteps))
323
 x_test=create_sequences(datalist[0],int(options.timesteps))
324
 for i in range(1,len(datalist)):
324
 for i in range(1,len(datalist)):
325
     x_test=np.vstack((x_test,create_sequences(datalist[i],int(options.timesteps))))
325
     x_test=np.vstack((x_test,create_sequences(datalist[i],int(options.timesteps))))
336
     plotData()
336
     plotData()
337
     exit(0)
337
     exit(0)
338
 
338
 
339
-testClasses=[0,1,2,3]
339
+testClasses=[0,1,2,3,4]
340
 
340
 
341
 if not len(testClasses)==len(testRanges):
341
 if not len(testClasses)==len(testRanges):
342
     print("ERROR:  testClasses and testRanges must have same length")
342
     print("ERROR:  testClasses and testRanges must have same length")
460
     print("F1-Score: ",F1)
460
     print("F1-Score: ",F1)
461
 
461
 
462
 anomalyMetric(classes,testRanges,testClasses)
462
 anomalyMetric(classes,testRanges,testClasses)
463
-plotData4()
464
 
463
 
465
 # Compute delay until correct detection for a list of ranges (when transition data exists)
464
 # Compute delay until correct detection for a list of ranges (when transition data exists)
466
 def computeDelay(l,classes,testRanges,testClasses):
465
 def computeDelay(l,classes,testRanges,testClasses):
471
         start=testRanges[i][0]
470
         start=testRanges[i][0]
472
         count=0
471
         count=0
473
         while start<testRanges[i][1]:
472
         while start<testRanges[i][1]:
474
-            start+=1
475
             if classes[start]==testClasses[i]:
473
             if classes[start]==testClasses[i]:
476
                 count+=1
474
                 count+=1
477
-            if count==NoFailsInARow:
475
+            if count==NoFailsInARow or start==(testRanges[i][1]-1):
478
                 count=0
476
                 count=0
479
                 #print(start,start-testRanges[i][0]-NoFailsInARow+timesteps)
477
                 #print(start,start-testRanges[i][0]-NoFailsInARow+timesteps)
480
                 d[ind]=start-testRanges[i][0]-NoFailsInARow+timesteps
478
                 d[ind]=start-testRanges[i][0]-NoFailsInARow+timesteps
481
                 break
479
                 break
480
+            start+=1
482
         ind+=1
481
         ind+=1
482
+    print(d)
483
     return(d.mean())
483
     return(d.mean())
484
 
484
 
485
-d=computeDelay([2,3],classes,testRanges,testClasses)
485
+print(testRanges)
486
+d=computeDelay([2,3,4],classes,testRanges,testClasses)
486
 print("mean delay: ",d)
487
 print("mean delay: ",d)
488
+plotData4()
487
 
489
 
488
 
490
 

Powered by TurnKey Linux.