Csar Fdez 1 month ago
parent
commit
9c34ebcb05
2 changed files with 37 additions and 1 deletions
  1. 34
    0
      RESULTS.txt
  2. 3
    1
      v2_unsupervised.py

+ 34
- 0
RESULTS.txt View File

@@ -0,0 +1,34 @@
1
+5-26
2
+timesteps      features                        f1-score   FN
3
+n=12  ['r1 s1','r1 s4','r1 s5','pa1 apiii']   0.966  [51 0 0 0 65]
4
+n=12  ['r1 s1','r1 s4','r1 s5']    0.9799   [0 0 0 0 57]
5
+n=18   ['r1 s1','r1 s4','r1 s5']  0.996   [0 0 0 0 10]
6
+n=24  error
7
+
8
+5-22   poques dades
9
+n=12  ['r1 s1','r1 s4','r1 s5','pa1 apiii']    
10
+n=12  ['r1 s1','r1 s4','r1 s5']    0.9799    
11
+n=18   ['r1 s1','r1 s4','r1 s5']  0.996    
12
+n=24  error
13
+
14
+
15
+
16
+5-18
17
+
18
+
19
+n=6 ['r1 s1','r1 s4','r1 s5']   0.941     [0 0 0 0 103]
20
+n=12  ['r1 s1','r1 s4','r1 s5','pa1 apiii']   0.951  [0 0 0 0 86]
21
+n=12  ['r1 s1','r1 s4','r1 s5']    0.934   [0 0 0 0 112]
22
+n=18   error
23
+n=24   ['r1 s1','r1 s4','r1 s5']  0.943   [0 0 0 0 92]
24
+
25
+
26
+
27
+
28
+30
29
+
30
+n=6  ['r1 s1','r1 s4','r1 s5']   error   [0 0 0 0 112]
31
+n=12  ['r1 s1','r1 s4','r1 s5','pa1 apiii']     error  [0 0 0 0 86]
32
+n=12  ['r1 s1','r1 s4','r1 s5']   error   [0 0 0 0 112]
33
+n=18     error
34
+n=24   ['r1 s1','r1 s4','r1 s5']   error   [0 0 0 0 92]

+ 3
- 1
v2_unsupervised.py View File

@@ -203,7 +203,8 @@ def plotData():
203 203
     )
204 204
     for i in range(NumberOfFailures+1):
205 205
         for  j in range(NumFeatures):
206
-            axes[i][j].plot(np.concatenate((dataTrainNorm[i][:,j],dataTestNorm[i][:,j])),label="Fail "+str(i)+",  feature 0")
206
+            #axes[i][j].plot(np.concatenate((dataTrainNorm[i][:,j],dataTestNorm[i][:,j])),label="Fail "+str(i)+",  feature 0")
207
+            axes[i][j].plot(np.concatenate((dataTrain[i][:,j],dataTest[i][:,j])),label="Fail "+str(i)+",  feature 0")
207 208
             if i==(NumberOfFailures):
208 209
                 axes[i][j].set_xlabel(features[j])
209 210
             if j==0:
@@ -373,6 +374,7 @@ def anomalyMetric(labels,ranges):
373 374
     # Precision: Rate of positive results:  TP/(TP+FP)  
374 375
     # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
375 376
 
377
+    print("Labels on test: ",set(labels))
376 378
     lab=[]    #   Labels are assigned randomly by classifer
377 379
     TP=[]
378 380
     FN=[]

Powered by TurnKey Linux.