|
@@ -0,0 +1,475 @@
|
|
1
|
+# Csar Fdez, UdL, 2025
|
|
2
|
+# Changes from v1: Normalization
|
|
3
|
+# IN v1, each failure type has its own normalization pars (mean and stdevs)
|
|
4
|
+# In v2, mean and stdev is the same for all data
|
|
5
|
+# v3.py trains the models looping in TIME_STEPS (4,8,12,16,20,24,....) finding the optimal Threshold factor
|
|
6
|
+
|
|
7
|
+# Derived from v3.py with code from v1_multifailure.py
|
|
8
|
+# This code don't train for multiple time steps !!
|
|
9
|
+
|
|
10
|
+import pandas as pd
|
|
11
|
+import matplotlib.pyplot as plt
|
|
12
|
+import datetime
|
|
13
|
+import numpy as np
|
|
14
|
+import keras
|
|
15
|
+import os.path
|
|
16
|
+from keras import layers
|
|
17
|
+from optparse import OptionParser
|
|
18
|
+import copy
|
|
19
|
+import pickle
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+parser = OptionParser()
|
|
23
|
+parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
|
|
24
|
+parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
|
|
25
|
+parser.add_option("-f", "--thresholdfactor", dest="TF", help="Threshold Factor ", default=1.4)
|
|
26
|
+
|
|
27
|
+(options, args) = parser.parse_args()
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+# data files arrays. Index:
|
|
31
|
+# 0. No failure
|
|
32
|
+# 1. Blocked evaporator
|
|
33
|
+# 2. Full Blocked condenser
|
|
34
|
+# 3. Partial Blocked condenser
|
|
35
|
+# 4 Fan condenser not working
|
|
36
|
+# 5. Open door
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+NumberOfFailures=4 # So far, we have only data for the first 4 types of failures
|
|
40
|
+datafiles=[]
|
|
41
|
+for i in range(NumberOfFailures+1):
|
|
42
|
+ datafiles.append([])
|
|
43
|
+
|
|
44
|
+# Next set of ddata corresponds to Freezer, SP=-26
|
|
45
|
+datafiles[0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_','2025-01-27_5_','2025-01-28_5_']
|
|
46
|
+datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
|
|
47
|
+#datafiles[1]=['2024-12-17_5_','2024-12-16_5_','2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] # This have transitions
|
|
48
|
+datafiles[2]=['2024-12-18_5_','2024-12-19_5_']
|
|
49
|
+datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
|
|
50
|
+datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
|
|
51
|
+#datafiles[4]=['2024-12-27_5_','2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_'] # This have transitions
|
|
52
|
+
|
|
53
|
+#datafiles[4]=[]
|
|
54
|
+
|
|
55
|
+# Features suggested by Xavier
|
|
56
|
+# Care with 'tc s3' because on datafiles[0] is always nulll
|
|
57
|
+# Seems to be incoropored in new tests
|
|
58
|
+
|
|
59
|
+#r1s5 supply air flow temperature
|
|
60
|
+#r1s1 inlet evaporator temperature
|
|
61
|
+#r1s4 condenser outlet
|
|
62
|
+
|
|
63
|
+# VAriables r1s4 and pa1 apiii may not exists in cloud controlers
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
|
|
67
|
+features=['r1 s1','r1 s4','r1 s5']
|
|
68
|
+featureNames={}
|
|
69
|
+featureNames['r1 s1']='$T_{evap}$'
|
|
70
|
+featureNames['r1 s4']='$T_{cond}$'
|
|
71
|
+featureNames['r1 s5']='$T_{air}$'
|
|
72
|
+featureNames['pa1 apiii']='$P_{elec}$'
|
|
73
|
+
|
|
74
|
+unitNames={}
|
|
75
|
+unitNames['r1 s1']='$(^{o}C)$'
|
|
76
|
+unitNames['r1 s4']='$(^{o}C)$'
|
|
77
|
+unitNames['r1 s5']='$(^{o}C)$'
|
|
78
|
+unitNames['pa1 apiii']='$(W)$'
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+#features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
|
|
82
|
+
|
|
83
|
+#features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
|
|
84
|
+
|
|
85
|
+NumFeatures=len(features)
|
|
86
|
+
|
|
87
|
+df_list=[]
|
|
88
|
+for i in range(NumberOfFailures+1):
|
|
89
|
+ df_list.append([])
|
|
90
|
+
|
|
91
|
+for i in range(NumberOfFailures+1):
|
|
92
|
+ dftemp=[]
|
|
93
|
+ for f in datafiles[i]:
|
|
94
|
+ print(" ", f)
|
|
95
|
+ #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
|
|
96
|
+ df1 = pd.read_csv('./data/'+f+'.csv')
|
|
97
|
+ dftemp.append(df1)
|
|
98
|
+ df_list[i]=pd.concat(dftemp)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+# subsampled to 5' = 30 * 10"
|
|
102
|
+# We consider smaples every 5' because in production, we will only have data at this frequency
|
|
103
|
+subsamplingrate=30
|
|
104
|
+
|
|
105
|
+dataframe=[]
|
|
106
|
+for i in range(NumberOfFailures+1):
|
|
107
|
+ dataframe.append([])
|
|
108
|
+
|
|
109
|
+for i in range(NumberOfFailures+1):
|
|
110
|
+ datalength=df_list[i].shape[0]
|
|
111
|
+ dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
|
|
112
|
+ dataframe[i].reset_index(inplace=True,drop=True)
|
|
113
|
+ dataframe[i].dropna(inplace=True)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+# Train data is first 2/3 of data
|
|
117
|
+# Test data is: last 1/3 of data
|
|
118
|
+dataTrain=[]
|
|
119
|
+dataTest=[]
|
|
120
|
+for i in range(NumberOfFailures+1):
|
|
121
|
+ dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
|
|
122
|
+ dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
|
|
123
|
+
|
|
124
|
+# Calculate means and stdev
|
|
125
|
+a=dataTrain[0]
|
|
126
|
+for i in range(1,NumberOfFailures+1):
|
|
127
|
+ a=np.vstack((a,dataTrain[i]))
|
|
128
|
+
|
|
129
|
+means=a.mean(axis=0)
|
|
130
|
+stdevs=a.std(axis=0)
|
|
131
|
+def normalize2(train,test):
|
|
132
|
+ return( (train-means)/stdevs, (test-means)/stdevs )
|
|
133
|
+
|
|
134
|
+dataTrainNorm=[]
|
|
135
|
+dataTestNorm=[]
|
|
136
|
+for i in range(NumberOfFailures+1):
|
|
137
|
+ dataTrainNorm.append([])
|
|
138
|
+ dataTestNorm.append([])
|
|
139
|
+
|
|
140
|
+for i in range(NumberOfFailures+1):
|
|
141
|
+ (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
|
|
142
|
+
|
|
143
|
+def plotData():
|
|
144
|
+ fig, axes = plt.subplots(
|
|
145
|
+ nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
146
|
+ )
|
|
147
|
+ for i in range(NumberOfFailures+1):
|
|
148
|
+ axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
|
|
149
|
+ axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
|
|
150
|
+ #axes[1].legend()
|
|
151
|
+ #axes[0].set_ylabel(features[0])
|
|
152
|
+ #axes[1].set_ylabel(features[1])
|
|
153
|
+ plt.show()
|
|
154
|
+
|
|
155
|
+#plotData()
|
|
156
|
+#exit(0)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+NumFilters=64
|
|
160
|
+KernelSize=7
|
|
161
|
+DropOut=0.2
|
|
162
|
+ThresholdFactor=1.4
|
|
163
|
+def create_sequences(values, time_steps):
|
|
164
|
+ output = []
|
|
165
|
+ for i in range(len(values) - time_steps + 1):
|
|
166
|
+ output.append(values[i : (i + time_steps)])
|
|
167
|
+ return np.stack(output)
|
|
168
|
+
|
|
169
|
+def AtLeastOneTrue(x):
|
|
170
|
+ for i in range(NumFeatures):
|
|
171
|
+ if x[i]:
|
|
172
|
+ return True
|
|
173
|
+ return False
|
|
174
|
+
|
|
175
|
+def anomalyMetric(th,ts,testList): # first of list is non failure data
|
|
176
|
+ # FP, TP: false/true positive
|
|
177
|
+ # TN, FN: true/false negative
|
|
178
|
+ # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
|
|
179
|
+ # Specificity: true negative ratio given data is OK: TN/(TN+FP)
|
|
180
|
+ # Accuracy: Rate of correct predictions: (TN+TP)/(TN+TP+FP+FN)
|
|
181
|
+ # Precision: Rate of positive results: TP/(TP+FP)
|
|
182
|
+ # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
|
|
183
|
+ # F2-score: predictive performance measure: 2*Specificity*Sensitity/(Specificity+Sensitity)
|
|
184
|
+
|
|
185
|
+ x_test = create_sequences(testList[0],ts)
|
|
186
|
+ x_test_pred = model.predict(x_test)
|
|
187
|
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
188
|
+ anomalies = test_mae_loss > th
|
|
189
|
+ count=0
|
|
190
|
+ for i in range(anomalies.shape[0]):
|
|
191
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
192
|
+ count+=1
|
|
193
|
+ FP=count
|
|
194
|
+ TN=anomalies.shape[0]-count
|
|
195
|
+ count=0
|
|
196
|
+ TP=np.zeros((NumberOfFailures))
|
|
197
|
+ FN=np.zeros((NumberOfFailures))
|
|
198
|
+ Sensitivity=np.zeros((NumberOfFailures))
|
|
199
|
+ Precision=np.zeros((NumberOfFailures))
|
|
200
|
+ for i in range(1,len(testList)):
|
|
201
|
+ x_test = create_sequences(testList[i],ts)
|
|
202
|
+ x_test_pred = model.predict(x_test)
|
|
203
|
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
204
|
+ anomalies = test_mae_loss > th
|
|
205
|
+ count=0
|
|
206
|
+ for j in range(anomalies.shape[0]):
|
|
207
|
+ if AtLeastOneTrue(anomalies[j]):
|
|
208
|
+ count+=1
|
|
209
|
+ TP[i-1] = count
|
|
210
|
+ FN[i-1] = anomalies.shape[0]-count
|
|
211
|
+ Sensitivity[i-1]=TP[i-1]/(TP[i-1]+FN[i-1])
|
|
212
|
+ Precision[i-1]=TP[i-1]/(TP[i-1]+FP)
|
|
213
|
+
|
|
214
|
+ GlobalSensitivity=TP.sum()/(TP.sum()+FN.sum())
|
|
215
|
+ Specificity=TN/(TN+FP)
|
|
216
|
+ Accuracy=(TN+TP.sum())/(TN+TP.sum()+FP+FN.sum())
|
|
217
|
+ GlobalPrecision=TP.sum()/(TP.sum()+FP)
|
|
218
|
+ F1Score= 2*GlobalPrecision*GlobalSensitivity/(GlobalPrecision+GlobalSensitivity)
|
|
219
|
+ F2Score = 2*Specificity*GlobalSensitivity/(Specificity+GlobalSensitivity)
|
|
220
|
+
|
|
221
|
+ print("Sensitivity: ",Sensitivity)
|
|
222
|
+ print("Global Sensitivity: ",GlobalSensitivity)
|
|
223
|
+ #print("Precision: ",Precision)
|
|
224
|
+ #print("Global Precision: ",GlobalPrecision)
|
|
225
|
+ print("Specifity: ",Specificity)
|
|
226
|
+ #print("Accuracy: ",Accuracy)
|
|
227
|
+ #print("F1Score: ",F1Score)
|
|
228
|
+ print("F2Score: ",F2Score)
|
|
229
|
+ #print("FP: ",FP)
|
|
230
|
+ #return Sensitivity+Specifity
|
|
231
|
+ return F2Score
|
|
232
|
+
|
|
233
|
+def listToString(l):
|
|
234
|
+ r=''
|
|
235
|
+ for i in l:
|
|
236
|
+ r+=str(i)
|
|
237
|
+ return(r.replace(' ',''))
|
|
238
|
+
|
|
239
|
+threshold={}
|
|
240
|
+
|
|
241
|
+fname='threshold_class'+listToString(features)+'.pk'
|
|
242
|
+if os.path.isfile(fname): # Checks if it's a file and exists
|
|
243
|
+ print("File ",fname," exists. Loading it!")
|
|
244
|
+ file = open(fname, 'rb')
|
|
245
|
+ threshold=pickle.load(file)
|
|
246
|
+ file.close()
|
|
247
|
+ if not int(options.timesteps) in threshold.keys():
|
|
248
|
+ threshold[int(options.timesteps)]=[]
|
|
249
|
+ for i in range(NumberOfFailures+1):
|
|
250
|
+ threshold[int(options.timesteps)].append(0) # Initzialize
|
|
251
|
+else:
|
|
252
|
+ threshold[int(options.timesteps)]=[]
|
|
253
|
+ for i in range(NumberOfFailures+1):
|
|
254
|
+ threshold[int(options.timesteps)].append(0) # Initzialize
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+model=[]
|
|
258
|
+modelckpt_callback =[]
|
|
259
|
+es_callback =[]
|
|
260
|
+path_checkpoint=[]
|
|
261
|
+
|
|
262
|
+timesteps=int(options.timesteps)
|
|
263
|
+x_train=[]
|
|
264
|
+for i in range(NumberOfFailures+1):
|
|
265
|
+ x_train.append(create_sequences(dataTrainNorm[i],timesteps))
|
|
266
|
+ model.append([])
|
|
267
|
+ model[i] = keras.Sequential(
|
|
268
|
+ [
|
|
269
|
+ layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])),
|
|
270
|
+ layers.Conv1D(
|
|
271
|
+ filters=NumFilters,
|
|
272
|
+ kernel_size=KernelSize,
|
|
273
|
+ padding="same",
|
|
274
|
+ strides=2,
|
|
275
|
+ activation="relu",
|
|
276
|
+ ),
|
|
277
|
+ layers.Dropout(rate=DropOut),
|
|
278
|
+ layers.Conv1D(
|
|
279
|
+ filters=int(NumFilters/2),
|
|
280
|
+ kernel_size=KernelSize,
|
|
281
|
+ padding="same",
|
|
282
|
+ strides=2,
|
|
283
|
+ activation="relu",
|
|
284
|
+ ),
|
|
285
|
+ layers.Conv1DTranspose(
|
|
286
|
+ filters=int(NumFilters/2),
|
|
287
|
+ kernel_size=KernelSize,
|
|
288
|
+ padding="same",
|
|
289
|
+ strides=2,
|
|
290
|
+ activation="relu",
|
|
291
|
+ ),
|
|
292
|
+ layers.Dropout(rate=DropOut),
|
|
293
|
+ layers.Conv1DTranspose(
|
|
294
|
+ filters=NumFilters,
|
|
295
|
+ kernel_size=KernelSize,
|
|
296
|
+ padding="same",
|
|
297
|
+ strides=2,
|
|
298
|
+ activation="relu",
|
|
299
|
+ ),
|
|
300
|
+ layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"),
|
|
301
|
+ ]
|
|
302
|
+ )
|
|
303
|
+ model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
|
|
304
|
+ model[i].summary()
|
|
305
|
+ path_checkpoint.append("model_class_v3_"+str(i)+"_"+str(timesteps)+listToString(features)+"_checkpoint.weights.h5")
|
|
306
|
+ es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15))
|
|
307
|
+ modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,))
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+if options.train:
|
|
311
|
+ history=[]
|
|
312
|
+ for i in range(NumberOfFailures+1):
|
|
313
|
+ history.append(model[i].fit( x_train[i], x_train[i], epochs=400, batch_size=128, validation_split=0.3, callbacks=[ es_callback[i], modelckpt_callback[i] ],))
|
|
314
|
+
|
|
315
|
+ x_train_pred=model[i].predict(x_train[i])
|
|
316
|
+ train_mae_loss=np.mean(np.abs(x_train_pred - x_train[i]), axis=1)
|
|
317
|
+ threshold[timesteps][i]=np.max(train_mae_loss,axis=0)
|
|
318
|
+
|
|
319
|
+ file = open('threshold_class'+listToString(features)+'.pk', 'wb')
|
|
320
|
+ pickle.dump(threshold, file)
|
|
321
|
+ file.close()
|
|
322
|
+else:
|
|
323
|
+ for i in range(NumberOfFailures+1):
|
|
324
|
+ model[i].load_weights(path_checkpoint[i])
|
|
325
|
+
|
|
326
|
+file = open('threshold_class'+listToString(features)+'.pk', 'rb')
|
|
327
|
+threshold=pickle.load(file)
|
|
328
|
+file.close()
|
|
329
|
+#print(threshold)
|
|
330
|
+
|
|
331
|
+# 1st scenario. Detect only anomaly. Later, we will classiffy it
|
|
332
|
+# Test data= testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
|
|
333
|
+datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]]
|
|
334
|
+d=np.vstack((datalist))
|
|
335
|
+
|
|
336
|
+x_test = create_sequences(d,int(options.timesteps))
|
|
337
|
+x_test_pred = model[0].predict(x_test)
|
|
338
|
+test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
339
|
+anomalies = test_mae_loss > threshold[int(options.timesteps)][0]*float(options.TF)
|
|
340
|
+anomalous_data_indices = []
|
|
341
|
+for i in range(anomalies.shape[0]):
|
|
342
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
343
|
+ #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
|
|
344
|
+ anomalous_data_indices.append(i)
|
|
345
|
+
|
|
346
|
+# Define ranges for plotting in different colors
|
|
347
|
+testRanges=[]
|
|
348
|
+r=0
|
|
349
|
+for i in range(len(datalist)):
|
|
350
|
+ testRanges.append([r,r+datalist[i].shape[0]])
|
|
351
|
+ r+=datalist[i].shape[0]
|
|
352
|
+# Drop the last TIME_STEPS for plotting
|
|
353
|
+testRanges[NumberOfFailures][1]=testRanges[NumberOfFailures][1]-int(options.timesteps)
|
|
354
|
+
|
|
355
|
+# Let's plot some features
|
|
356
|
+
|
|
357
|
+colorline=['violet','lightcoral','cyan','lime','grey']
|
|
358
|
+colordot=['darkviolet','red','blue','green','black']
|
|
359
|
+
|
|
360
|
+#featuresToPlot=['r1 s1','r1 s2','r1 s3','pa1 apiii']
|
|
361
|
+featuresToPlot=features
|
|
362
|
+
|
|
363
|
+indexesToPlot=[]
|
|
364
|
+for i in featuresToPlot:
|
|
365
|
+ indexesToPlot.append(features.index(i))
|
|
366
|
+
|
|
367
|
+def plotData3():
|
|
368
|
+ NumFeaturesToPlot=len(indexesToPlot)
|
|
369
|
+ plt.rcParams.update({'font.size': 16})
|
|
370
|
+ fig, axes = plt.subplots(
|
|
371
|
+ nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
372
|
+ )
|
|
373
|
+ for i in range(NumFeaturesToPlot):
|
|
374
|
+ x=[]
|
|
375
|
+ y=[]
|
|
376
|
+ for k in anomalous_data_indices:
|
|
377
|
+ if (k+int(options.timesteps))<x_test.shape[0]:
|
|
378
|
+ x.append(k+int(options.timesteps))
|
|
379
|
+ y.append(x_train[k+int(options.timesteps),0,indexesToPlot[i]]*stdevs[i]+means[i])
|
|
380
|
+ axes[i].plot(x,y ,color='black',marker='.',linewidth=0,label="Fail detection" )
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+ init=0
|
|
384
|
+ end=testRanges[0][1]
|
|
385
|
+ axes[i].plot(range(init,end),xtrain[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="No fail")
|
|
386
|
+ init=end
|
|
387
|
+ end+=(testRanges[1][1]-testRanges[1][0])
|
|
388
|
+ for j in range(1,NumberOfFailures+1):
|
|
389
|
+ axes[i].plot(range(init,end),xtrain[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Fail type "+str(j), color=colorline[j-1],linewidth=1)
|
|
390
|
+ if j<NumberOfFailures:
|
|
391
|
+ init=end
|
|
392
|
+ end+=(testRanges[j+1][1]-testRanges[j+1][0])
|
|
393
|
+
|
|
394
|
+
|
|
395
|
+ if i==(NumFeatures-1):
|
|
396
|
+ axes[i].legend(loc='right')
|
|
397
|
+ s=''
|
|
398
|
+ s+=featureNames[features[indexesToPlot[i]]]
|
|
399
|
+ s+=' '+unitNames[features[indexesToPlot[i]]]
|
|
400
|
+ axes[i].set_ylabel(s)
|
|
401
|
+ axes[i].grid()
|
|
402
|
+ axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
|
|
403
|
+ plt.show()
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+#plotData3()
|
|
407
|
+
|
|
408
|
+
|
|
409
|
+# 2nd scenario. Go over anomalies and classify it by less error
|
|
410
|
+
|
|
411
|
+anomalous_data_type=[]
|
|
412
|
+x_test_predict=[]
|
|
413
|
+for m in range(1,NumberOfFailures+1):
|
|
414
|
+ x_test_predict.append(model[m].predict(x_test))
|
|
415
|
+
|
|
416
|
+anomalous_data_type={}
|
|
417
|
+for i in range(1,NumberOfFailures+1):
|
|
418
|
+ anomalous_data_type[i-1]=[]
|
|
419
|
+
|
|
420
|
+for i in anomalous_data_indices:
|
|
421
|
+ error=[]
|
|
422
|
+ for m in range(1,NumberOfFailures+1):
|
|
423
|
+ error.append(np.mean(np.mean(np.abs(x_test_predict[m-1][i:i+1,:,:]-x_test[i:i+1,:,:]),axis=1)))
|
|
424
|
+ anomalous_data_type[np.argmin(error)].append(i)
|
|
425
|
+
|
|
426
|
+
|
|
427
|
+def plotData4():
|
|
428
|
+ NumFeaturesToPlot=len(indexesToPlot)
|
|
429
|
+ plt.rcParams.update({'font.size': 16})
|
|
430
|
+ fig, axes = plt.subplots(
|
|
431
|
+ nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
432
|
+ )
|
|
433
|
+ for i in range(NumFeaturesToPlot):
|
|
434
|
+
|
|
435
|
+
|
|
436
|
+ init=0
|
|
437
|
+ end=testRanges[0][1]
|
|
438
|
+ axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="No fail", color='black')
|
|
439
|
+ init=end
|
|
440
|
+ end+=(testRanges[1][1]-testRanges[1][0])
|
|
441
|
+ for j in range(1,NumberOfFailures+1):
|
|
442
|
+ axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Fail type "+str(j), color=colorline[j-1],linewidth=1)
|
|
443
|
+ if j<NumberOfFailures:
|
|
444
|
+ init=end
|
|
445
|
+ end+=(testRanges[j+1][1]-testRanges[j+1][0])
|
|
446
|
+
|
|
447
|
+ for j in range(NumberOfFailures):
|
|
448
|
+ x=[]
|
|
449
|
+ y=[]
|
|
450
|
+ for k in anomalous_data_type[j]:
|
|
451
|
+ if (k+int(options.timesteps))<x_test.shape[0]:
|
|
452
|
+ x.append(k+int(options.timesteps))
|
|
453
|
+ y.append(x_test[k+int(options.timesteps),0,indexesToPlot[i]]*stdevs[i]+means[i])
|
|
454
|
+ axes[i].plot(x,y ,color=colordot[j],marker='.',linewidth=0,label="Fail detect type "+str(j+1) )
|
|
455
|
+
|
|
456
|
+
|
|
457
|
+
|
|
458
|
+ if i==(NumFeatures-1):
|
|
459
|
+ axes[i].legend(loc='right')
|
|
460
|
+ s=''
|
|
461
|
+ s+=featureNames[features[indexesToPlot[i]]]
|
|
462
|
+ s+=' '+unitNames[features[indexesToPlot[i]]]
|
|
463
|
+ axes[i].set_ylabel(s)
|
|
464
|
+ axes[i].grid()
|
|
465
|
+ axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
|
|
466
|
+ plt.show()
|
|
467
|
+
|
|
468
|
+
|
|
469
|
+plotData4()
|
|
470
|
+
|
|
471
|
+## It remains to implemenent anomaly metrics for each failure type
|
|
472
|
+
|
|
473
|
+exit(0)
|
|
474
|
+
|
|
475
|
+
|