|
@@ -0,0 +1,428 @@
|
|
1
|
+# Csar Fdez, UdL, 2025
|
|
2
|
+# Changes from v1: Normalization
|
|
3
|
+# IN v1, each failure type has its own normalization pars (mean and stdevs)
|
|
4
|
+# In v2, mean and stdev is the same for all data
|
|
5
|
+# v3.py trains the models looping in TIME_STEPS (4,8,12,16,20,24,....) finding the optimal Threshold factor
|
|
6
|
+
|
|
7
|
+# Derived from v3_class, derived from v3.py with code from v1_multifailure.py
|
|
8
|
+# This code don't train for multiple time steps !!
|
|
9
|
+
|
|
10
|
+# partial and total blocked condenser merged in one class.
|
|
11
|
+# Construction of train and test sets changed. Now is done by days
|
|
12
|
+
|
|
13
|
+import pandas as pd
|
|
14
|
+import matplotlib.pyplot as plt
|
|
15
|
+import datetime
|
|
16
|
+import numpy as np
|
|
17
|
+import keras
|
|
18
|
+import os.path
|
|
19
|
+from keras import layers
|
|
20
|
+from optparse import OptionParser
|
|
21
|
+import copy
|
|
22
|
+import pickle
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+parser = OptionParser()
|
|
26
|
+parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
|
|
27
|
+parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
|
|
28
|
+#parser.add_option("-f", "--thresholdfactor", dest="TF", help="Threshold Factor ", default=1.4)
|
|
29
|
+# threshold makes no sense when classifying, becaues we apply many models and decide class for the less MSE
|
|
30
|
+
|
|
31
|
+(options, args) = parser.parse_args()
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+# data files arrays. Index:
|
|
35
|
+# 0. No failure
|
|
36
|
+# 1. Blocked evaporator
|
|
37
|
+# 2. Full Blocked condenser
|
|
38
|
+# 3. Partial Blocked condenser
|
|
39
|
+# 4 Fan condenser not working
|
|
40
|
+# 5. Open door
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+NumberOfFailures=3 # So far, we have only data for the first 4 types of failures
|
|
44
|
+datafiles=[[],[]] # 0 for train, 1 for test
|
|
45
|
+for i in range(NumberOfFailures+1):
|
|
46
|
+ datafiles[0].append([])
|
|
47
|
+ datafiles[1].append([])
|
|
48
|
+
|
|
49
|
+# Next set of ddata corresponds to Freezer, SP=-26
|
|
50
|
+datafiles[0][0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_']
|
|
51
|
+datafiles[1][0]=['2025-01-27_5_','2025-01-28_5_']
|
|
52
|
+
|
|
53
|
+datafiles[0][1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_']
|
|
54
|
+datafiles[1][1]=['2024-12-14_5_','2024-12-15_5_']
|
|
55
|
+
|
|
56
|
+datafiles[0][2]=['2024-12-18_5_','2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_']
|
|
57
|
+datafiles[1][2]=['2024-12-19_5_','2024-12-25_5_','2024-12-26_5_']
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+datafiles[0][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_']
|
|
61
|
+datafiles[1][3]=['2024-12-31_5_','2025-01-01_5_']
|
|
62
|
+
|
|
63
|
+#r1s5 supply air flow temperature
|
|
64
|
+#r1s1 inlet evaporator temperature
|
|
65
|
+#r1s4 condenser outlet
|
|
66
|
+
|
|
67
|
+# VAriables r1s4 and pa1 apiii may not exists in cloud controlers
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
|
|
71
|
+features=['r1 s1','r1 s4','r1 s5']
|
|
72
|
+features=['r1 s5']
|
|
73
|
+# Feature combination suggested by AKO
|
|
74
|
+#features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
|
|
75
|
+#features=['r1 s1','r1 s4','r1 s5']
|
|
76
|
+#features=['r1 s1','r1 s5','pa1 apiii']
|
|
77
|
+#features=['r1 s5','pa1 apiii']
|
|
78
|
+features=['r1 s1','r1 s5']
|
|
79
|
+#features=['r1 s5']
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+featureNames={}
|
|
84
|
+featureNames['r1 s1']='$T_{evap}$'
|
|
85
|
+featureNames['r1 s4']='$T_{cond}$'
|
|
86
|
+featureNames['r1 s5']='$T_{air}$'
|
|
87
|
+featureNames['pa1 apiii']='$P_{elec}$'
|
|
88
|
+
|
|
89
|
+unitNames={}
|
|
90
|
+unitNames['r1 s1']='$(^{o}C)$'
|
|
91
|
+unitNames['r1 s4']='$(^{o}C)$'
|
|
92
|
+unitNames['r1 s5']='$(^{o}C)$'
|
|
93
|
+unitNames['pa1 apiii']='$(W)$'
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+#features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
|
|
97
|
+
|
|
98
|
+#features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
|
|
99
|
+
|
|
100
|
+NumFeatures=len(features)
|
|
101
|
+
|
|
102
|
+df_list=[[],[]]
|
|
103
|
+for i in range(NumberOfFailures+1):
|
|
104
|
+ df_list[0].append([])
|
|
105
|
+ df_list[1].append([])
|
|
106
|
+
|
|
107
|
+for i in range(NumberOfFailures+1):
|
|
108
|
+ dftemp=[]
|
|
109
|
+ for f in datafiles[0][i]:
|
|
110
|
+ print(" ", f)
|
|
111
|
+ df1 = pd.read_csv('./data/'+f+'.csv')
|
|
112
|
+ dftemp.append(df1)
|
|
113
|
+ df_list[0][i]=pd.concat(dftemp)
|
|
114
|
+
|
|
115
|
+for i in range(NumberOfFailures+1):
|
|
116
|
+ dftemp=[]
|
|
117
|
+ for f in datafiles[1][i]:
|
|
118
|
+ print(" ", f)
|
|
119
|
+ #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
|
|
120
|
+ df1 = pd.read_csv('./data/'+f+'.csv')
|
|
121
|
+ dftemp.append(df1)
|
|
122
|
+ df_list[1][i]=pd.concat(dftemp)
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+# subsampled to 5' = 30 * 10"
|
|
127
|
+# We consider smaples every 5' because in production, we will only have data at this frequency
|
|
128
|
+subsamplingrate=30
|
|
129
|
+
|
|
130
|
+dataframe=[[],[]]
|
|
131
|
+for i in range(NumberOfFailures+1):
|
|
132
|
+ dataframe[0].append([])
|
|
133
|
+ dataframe[1].append([])
|
|
134
|
+
|
|
135
|
+for i in range(NumberOfFailures+1):
|
|
136
|
+ datalength=df_list[0][i].shape[0]
|
|
137
|
+ dataframe[0][i]=df_list[0][i].iloc[range(0,datalength,subsamplingrate)][features]
|
|
138
|
+ dataframe[0][i].reset_index(inplace=True,drop=True)
|
|
139
|
+ dataframe[0][i].dropna(inplace=True)
|
|
140
|
+for i in range(NumberOfFailures+1):
|
|
141
|
+ datalength=df_list[1][i].shape[0]
|
|
142
|
+ dataframe[1][i]=df_list[1][i].iloc[range(0,datalength,subsamplingrate)][features]
|
|
143
|
+ dataframe[1][i].reset_index(inplace=True,drop=True)
|
|
144
|
+ dataframe[1][i].dropna(inplace=True)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+# Train data is first 2/3 of data
|
|
148
|
+# Test data is: last 1/3 of data
|
|
149
|
+dataTrain=[]
|
|
150
|
+dataTest=[]
|
|
151
|
+for i in range(NumberOfFailures+1):
|
|
152
|
+ dataTrain.append(dataframe[0][i].values)
|
|
153
|
+ dataTest.append(dataframe[0][i])
|
|
154
|
+
|
|
155
|
+# Calculate means and stdev
|
|
156
|
+a=dataTrain[0]
|
|
157
|
+for i in range(1,NumberOfFailures+1):
|
|
158
|
+ a=np.vstack((a,dataTrain[i]))
|
|
159
|
+
|
|
160
|
+means=a.mean(axis=0)
|
|
161
|
+stdevs=a.std(axis=0)
|
|
162
|
+def normalize2(train,test):
|
|
163
|
+ return( (train-means)/stdevs, (test-means)/stdevs )
|
|
164
|
+
|
|
165
|
+dataTrainNorm=[]
|
|
166
|
+dataTestNorm=[]
|
|
167
|
+for i in range(NumberOfFailures+1):
|
|
168
|
+ dataTrainNorm.append([])
|
|
169
|
+ dataTestNorm.append([])
|
|
170
|
+
|
|
171
|
+for i in range(NumberOfFailures+1):
|
|
172
|
+ (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
|
|
173
|
+
|
|
174
|
+def plotData():
|
|
175
|
+ fig, axes = plt.subplots(
|
|
176
|
+ nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
177
|
+ )
|
|
178
|
+ for i in range(NumberOfFailures+1):
|
|
179
|
+ axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
|
|
180
|
+ axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
|
|
181
|
+ #axes[1].legend()
|
|
182
|
+ #axes[0].set_ylabel(features[0])
|
|
183
|
+ #axes[1].set_ylabel(features[1])
|
|
184
|
+ plt.show()
|
|
185
|
+
|
|
186
|
+#plotData()
|
|
187
|
+#exit(0)
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+NumFilters=64
|
|
191
|
+KernelSize=7
|
|
192
|
+DropOut=0.2
|
|
193
|
+ThresholdFactor=1.4
|
|
194
|
+def create_sequences(values, time_steps):
|
|
195
|
+ output = []
|
|
196
|
+ for i in range(len(values) - time_steps + 1):
|
|
197
|
+ output.append(values[i : (i + time_steps)])
|
|
198
|
+ return np.stack(output)
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+def listToString(l):
|
|
203
|
+ r=''
|
|
204
|
+ for i in l:
|
|
205
|
+ r+=str(i)
|
|
206
|
+ return(r.replace(' ',''))
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+model=[]
|
|
210
|
+modelckpt_callback =[]
|
|
211
|
+es_callback =[]
|
|
212
|
+path_checkpoint=[]
|
|
213
|
+
|
|
214
|
+timesteps=int(options.timesteps)
|
|
215
|
+x_train=[]
|
|
216
|
+for i in range(NumberOfFailures+1):
|
|
217
|
+ x_train.append(create_sequences(dataTrainNorm[i],timesteps))
|
|
218
|
+ model.append([])
|
|
219
|
+ model[i] = keras.Sequential(
|
|
220
|
+ [
|
|
221
|
+ layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])),
|
|
222
|
+ layers.Conv1D(
|
|
223
|
+ filters=NumFilters,
|
|
224
|
+ kernel_size=KernelSize,
|
|
225
|
+ padding="same",
|
|
226
|
+ strides=2,
|
|
227
|
+ activation="relu",
|
|
228
|
+ ),
|
|
229
|
+ layers.Dropout(rate=DropOut),
|
|
230
|
+ layers.Conv1D(
|
|
231
|
+ filters=int(NumFilters/2),
|
|
232
|
+ kernel_size=KernelSize,
|
|
233
|
+ padding="same",
|
|
234
|
+ strides=2,
|
|
235
|
+ activation="relu",
|
|
236
|
+ ),
|
|
237
|
+ layers.Conv1DTranspose(
|
|
238
|
+ filters=int(NumFilters/2),
|
|
239
|
+ kernel_size=KernelSize,
|
|
240
|
+ padding="same",
|
|
241
|
+ strides=2,
|
|
242
|
+ activation="relu",
|
|
243
|
+ ),
|
|
244
|
+ layers.Dropout(rate=DropOut),
|
|
245
|
+ layers.Conv1DTranspose(
|
|
246
|
+ filters=NumFilters,
|
|
247
|
+ kernel_size=KernelSize,
|
|
248
|
+ padding="same",
|
|
249
|
+ strides=2,
|
|
250
|
+ activation="relu",
|
|
251
|
+ ),
|
|
252
|
+ layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"),
|
|
253
|
+ ]
|
|
254
|
+ )
|
|
255
|
+ model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
|
|
256
|
+ model[i].summary()
|
|
257
|
+ path_checkpoint.append("model_class_v5_"+str(i)+"_"+str(timesteps)+listToString(features)+"_checkpoint.weights.h5")
|
|
258
|
+ es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15))
|
|
259
|
+ modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,))
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+if options.train:
|
|
263
|
+ history=[]
|
|
264
|
+ for i in range(NumberOfFailures+1):
|
|
265
|
+ history.append(model[i].fit( x_train[i], x_train[i], epochs=400, batch_size=128, validation_split=0.3, callbacks=[ es_callback[i], modelckpt_callback[i] ],))
|
|
266
|
+
|
|
267
|
+ x_train_pred=model[i].predict(x_train[i])
|
|
268
|
+else:
|
|
269
|
+ for i in range(NumberOfFailures+1):
|
|
270
|
+ model[i].load_weights(path_checkpoint[i])
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+# Let's plot some features
|
|
275
|
+
|
|
276
|
+colorline=['black','violet','lightcoral','cyan','lime','grey']
|
|
277
|
+colordot=['grey','darkviolet','red','blue','green','black']
|
|
278
|
+
|
|
279
|
+#featuresToPlot=['r1 s1','r1 s2','r1 s3','pa1 apiii']
|
|
280
|
+featuresToPlot=features
|
|
281
|
+
|
|
282
|
+indexesToPlot=[]
|
|
283
|
+for i in featuresToPlot:
|
|
284
|
+ indexesToPlot.append(features.index(i))
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+# 2nd scenario. Go over anomalies and classify it by less error
|
|
289
|
+datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3]]
|
|
290
|
+x_test=create_sequences(datalist[0],int(options.timesteps))
|
|
291
|
+for i in range(1,len(datalist)):
|
|
292
|
+ x_test=np.vstack((x_test,create_sequences(datalist[i],int(options.timesteps))))
|
|
293
|
+
|
|
294
|
+# Define ranges for plotting in different colors
|
|
295
|
+testRanges=[]
|
|
296
|
+r=0
|
|
297
|
+for i in range(len(datalist)):
|
|
298
|
+ testRanges.append([r,r+datalist[i].shape[0]-int(options.timesteps)])
|
|
299
|
+ r+=datalist[i].shape[0]-int(options.timesteps)
|
|
300
|
+
|
|
301
|
+testClasses=[0,1,2,3]
|
|
302
|
+
|
|
303
|
+if not len(testClasses)==len(testRanges):
|
|
304
|
+ print("ERROR: testClasses and testRanges must have same length")
|
|
305
|
+ exit(0)
|
|
306
|
+
|
|
307
|
+x_test_predict=[]
|
|
308
|
+for m in range(NumberOfFailures+1):
|
|
309
|
+ x_test_predict.append(model[m].predict(x_test))
|
|
310
|
+
|
|
311
|
+x_test_predict=np.array((x_test_predict))
|
|
312
|
+test_mae_loss =[]
|
|
313
|
+for m in range(NumberOfFailures+1):
|
|
314
|
+ test_mae_loss.append(np.mean(np.abs(x_test_predict[m,:,:,:] - x_test), axis=1))
|
|
315
|
+
|
|
316
|
+test_mae_loss=np.array((test_mae_loss))
|
|
317
|
+test_mae_loss_average=np.mean(test_mae_loss,axis=2) # average over features
|
|
318
|
+classes=np.argmin(test_mae_loss_average,axis=0)
|
|
319
|
+
|
|
320
|
+x=[]
|
|
321
|
+y=[]
|
|
322
|
+for j in range(NumberOfFailures+1):
|
|
323
|
+ x.append([])
|
|
324
|
+ y.append([])
|
|
325
|
+for j in range(NumberOfFailures+1):
|
|
326
|
+ for k in range(testRanges[j][0],testRanges[j][1]):
|
|
327
|
+ if not classes[k]==testClasses[j]:
|
|
328
|
+ x[classes[k]].append(k)
|
|
329
|
+ y[classes[k]].append(x_test[k,0,indexesToPlot[0]]*stdevs[0]+means[0])
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+def plotData4():
|
|
333
|
+ NumFeaturesToPlot=len(indexesToPlot)
|
|
334
|
+ plt.rcParams.update({'font.size': 16})
|
|
335
|
+ fig, axes = plt.subplots(
|
|
336
|
+ nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
337
|
+ )
|
|
338
|
+ for i in range(NumFeaturesToPlot):
|
|
339
|
+ init=0
|
|
340
|
+ end=testRanges[0][1]
|
|
341
|
+ for j in range(NumberOfFailures+1):
|
|
342
|
+ if NumFeaturesToPlot==1:
|
|
343
|
+ axes.plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Class "+str(j), color=colorline[j],linewidth=1)
|
|
344
|
+ else:
|
|
345
|
+ axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Class "+str(j), color=colorline[j],linewidth=1)
|
|
346
|
+ if j<NumberOfFailures:
|
|
347
|
+ init=end
|
|
348
|
+ end+=(testRanges[j+1][1]-testRanges[j+1][0])
|
|
349
|
+
|
|
350
|
+ #if i==0:
|
|
351
|
+ # axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
|
|
352
|
+
|
|
353
|
+
|
|
354
|
+
|
|
355
|
+ s=''
|
|
356
|
+ s+=featureNames[features[indexesToPlot[i]]]
|
|
357
|
+ s+=' '+unitNames[features[indexesToPlot[i]]]
|
|
358
|
+ if NumFeaturesToPlot==1:
|
|
359
|
+ axes.set_ylabel(s)
|
|
360
|
+ axes.grid()
|
|
361
|
+ else:
|
|
362
|
+ axes[i].set_ylabel(s)
|
|
363
|
+ axes[i].grid()
|
|
364
|
+
|
|
365
|
+ for j in range(NumberOfFailures+1):
|
|
366
|
+ if NumFeaturesToPlot==1:
|
|
367
|
+ axes.plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
|
|
368
|
+ else:
|
|
369
|
+ axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
|
|
370
|
+
|
|
371
|
+ if NumFeaturesToPlot==1:
|
|
372
|
+ axes.legend(ncol=4,loc=(0.1,0.98))
|
|
373
|
+ else:
|
|
374
|
+ axes[0].legend(ncol=4,loc=(0.1,0.98))
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+ #axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
|
|
378
|
+ plt.show()
|
|
379
|
+
|
|
380
|
+def whichClass(k,ranges):
|
|
381
|
+ for i in range(NumberOfFailures+1):
|
|
382
|
+ if k in range(ranges[i][0],ranges[i][1]):
|
|
383
|
+ return(i)
|
|
384
|
+ print("Error: Class not exists")
|
|
385
|
+ exit(0)
|
|
386
|
+
|
|
387
|
+## It remains to implemenent anomaly metrics for each failure type
|
|
388
|
+def anomalyMetric(classes,testranges,testclasses):
|
|
389
|
+ # FP, TP: false/true positive
|
|
390
|
+ # TN, FN: true/false negative
|
|
391
|
+ # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
|
|
392
|
+ # Precision: Rate of positive results: TP/(TP+FP)
|
|
393
|
+ # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
|
|
394
|
+ TP=np.zeros(NumberOfFailures+1)
|
|
395
|
+ FP=np.zeros(NumberOfFailures+1)
|
|
396
|
+ FN=np.zeros(NumberOfFailures+1)
|
|
397
|
+ Sensitivity=np.zeros(NumberOfFailures+1)
|
|
398
|
+ Precision=np.zeros(NumberOfFailures+1)
|
|
399
|
+ for i in range(len(testranges)):
|
|
400
|
+ for k in range(testranges[i][0],testranges[i][1]):
|
|
401
|
+ if classes[k]==testclasses[i]:
|
|
402
|
+ TP[i]+=1
|
|
403
|
+ else:
|
|
404
|
+ FP[i]+=1
|
|
405
|
+ for k in range(testranges[NumberOfFailures][1]):
|
|
406
|
+ for i in range(len(testranges)):
|
|
407
|
+ classK=whichClass(k,testranges)
|
|
408
|
+ if not classK==testClasses[i]:
|
|
409
|
+ if not classes[k]==classK:
|
|
410
|
+ FN[classes[k]]+=1
|
|
411
|
+
|
|
412
|
+ for i in range(NumberOfFailures+1):
|
|
413
|
+ Sensitivity[i]=TP[i]/(TP[i]+FN[i])
|
|
414
|
+ Precision[i]=TP[i]/(TP[i]+FP[i])
|
|
415
|
+ S=Sensitivity.mean()
|
|
416
|
+ P=Precision.mean()
|
|
417
|
+ F1=2*S*P/(S+P)
|
|
418
|
+ print("Sensitivity: ",Sensitivity)
|
|
419
|
+ print("S: ",S)
|
|
420
|
+ print("Precision: ",Precision)
|
|
421
|
+ print("P: ",P)
|
|
422
|
+ print("F1-Score: ",F1)
|
|
423
|
+
|
|
424
|
+anomalyMetric(classes,testRanges,testClasses)
|
|
425
|
+plotData4()
|
|
426
|
+exit(0)
|
|
427
|
+
|
|
428
|
+
|