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a b s t r a c t

Learning temporal patterns in time series remains a challenging task up until today. Particularly
for anomaly detection in time series, it is essential to learn the underlying structure of a system’s
normal behavior. Periodic or quasiperiodic signals with complex temporal patterns make the problem
even more challenging: Anomalies may be a hard-to-detect deviation from the normal recurring
pattern. In this paper, we present TCN-AE, a temporal convolutional network autoencoder based on
dilated convolutions. Contrary to many other anomaly detection algorithms, TCN-AE is trained in an
unsupervised manner. The algorithm demonstrates its efficacy on a comprehensive real-world anomaly
benchmark comprising electrocardiogram (ECG) recordings of patients with cardiac arrhythmia. TCN-
AE significantly outperforms several other unsupervised state-of-the-art anomaly detection algorithms.
Moreover, we investigate the contribution of the individual enhancements and show that each new
ingredient improves the overall performance on the investigated benchmark.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The digitization of companies and their processes, households,
nd many other public institutions is progressing at an increasing
ace. Due to the extensive cross-linking and networking of sys-
ems, large amounts of complex data are continuously generated.
oday, companies are equipping even the smallest devices with
umerous sensors that consistently supply various measurements
nd other indicators. New technologies for the Internet of things,
yber–physical systems (CPS), and other related domains enable
anufacturers to equip such devices with notable computing
ower, networking capabilities, and numerous sensors. These
evices can consistently record and distribute various measure-
ents and other information. In the past, data was often analyzed
nd interpreted manually by human experts. This has become a
onsiderable challenge in recent years due to the sheer endless
mounts of data and the associated manifold complexity of the
ata. In this context, the necessity for automated, intelligent, and
daptable analytical approaches arose, and researchers invested
uch effort into developing new methods and algorithms.
Especially in the field of machine learning (ML) and partic-

larly deep learning (DL), the research community has made
otable progress in recent years. ML and DL models are capable
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of learning solely from data and can be trained for various tasks.
However, still many challenges and unresolved questions remain
up until today. For example, many ML/DL algorithms have to
be supervised and commonly require large amounts of labeled
data for the training process. To generate labeled datasets, of-
ten a tedious and time-consuming labeling process is needed,
which has to be carried out by human domain experts. In some
application areas, the available labeled data is not sufficient to
train a model successfully, and also, the accessible data that
could be labeled is somewhat limited. In particular, in anomaly
detection applications, one has to deal with datasets with little
labeled data. Anomaly detection is concerned with the task of
discovering events that deviate from what is considered normal
(nominal)ehavior, occurring in unusual or unexpected situations.
Typically, anomalies indicate a malfunction, an error, or another
issue in the monitored system and mainly require immediate
action to prevent (further) damage or harm. Identifying anoma-
lous behavior is becoming increasingly important in many fields,
such as predictive maintenance, fraud detection, networking, and
health monitoring systems (HMS). In this work, discussed below
in greater detail, we will study a particular anomaly detection
problem taken from the field of HMS.

Systematically, anomalous events can be categorized [1] as
point (a single data instance being an statistical outlier), con-
textual (only anomalous under a certain condition on the data),
and collective anomalies (a set of data points differs from the
others while each constituting point is very likely normal when
considered alone). For example, in the electrocardiogram (ECG)
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ignals, arrhythmias is typically seen as a collective anomaly, as
llustrated in Fig. 1.

As already noted, labeled data for anomaly detection tasks are
sually relatively sparse or not available at all. Therefore, many
achine learning algorithms in this field rely on unsupervised

earning techniques instead of supervised approaches. Unsuper-
ised learning algorithms attempt to learn patterns or structure
n the data without relying on expert knowledge. For anomaly
etection, a common assumption is that a large proportion of
he available data instances represent nominal (normal) behav-
or (however, not necessarily exclusively nominal), which can
e learned by a model. Based on its understanding of what is
sual or expected, the model can later be used in deployment to
istinguish between normal and abnormal patterns.
To understand the complexity of anomaly detection in

uasiperiodic temporal data, we show in Fig. 1 an anomaly
xample. The normal signal is quasiperiodic (peak height and
ther small details may differ from period to period to some
xtent). The anomalous region has a very similar peak, yet it
omes earlier than expected. The model that predicts anomalies
hus has to learn the shape of the peak and when to expect it. This
equires the processing of long-range information since the local
eighborhood of the anomalous peak looks absolutely normal.
In this paper, we propose a novel temporal autoencoder archi-

ecture based on convolutional neural networks, in the following
eferred to as TCN-AE, capable of processing long-range informa-
ion in time series. TCN-AE uses so-called dilated convolutional
ayers to naturally create a large receptive field and process a
ime series signal at different time scales. TCN-AE consists of
wo parts, an encoder, and a decoder, which are both trained
imultaneously and learn to find a compressed representation of
he input time series (encoder) and reconstruct the original input
gain (decoder). After training TCN-AE, we use the reconstruction
rror as an indicator for abnormal behavior. We analyze, discuss,
nd compare the capabilities of TCN-AE on a challenging real-
orld HMS application, namely the detection of arrhythmias in
lectrocardiogram (ECG) signals of heart patients.
We formulate the following key questions that drive our re-

earch:

• How well can unsupervised deep learning models learn to
detect anomalies?
• Which models are best to process the complex and long-

range temporal patterns observed in periodic or quasiperi-
odic time series data?

The key findings of the research described in this paper can be
ormulated as follows:

• Under certain (mild) assumptions it is possible to train unsu-
pervised Deep Learning (DL) models for anomaly detection.
The novel autoencoder approach is essential for achieving
this.
• It is important to process the data on different time scales

(like TCN and wavelets do) and to utilize the information
from different time scales in the anomaly detection process.

The rest of this paper is organized as follows: Sections 1.1 and
.2 present work being related to our approach while Section 2
ummarizes the TCN approach and introduces the autoencoder
nhancement and other enhancements added to TCN by us. In
ection 3, we present our experimental setup, and in Section 4,
e show and discuss the results obtained in this work. Finally,
e conclude this work in Section 5.
2

1.1. Related work

Anomaly detection is a broad research field, where especially
machine learning (ML) approaches became increasingly popular
over the past years. An important subdomain is (unsupervised)
anomaly detection in time series. A recent review on unsuper-
vised learning in general is given in [2]. Clustering, undoubt-
edly the most well-known sub-field of unsupervised learning, is
covered in twelve chapters of [2]; a recent review of cluster-
ing methods in general is found in [3]. A very comprehensive
review of anomaly detection methods was given by Chandola
et al. [1]. Goldstein & Uchida [4] give a recent review and com-
parative evaluation of unsupervised anomaly detection methods.
A recent survey by Thudumu et al. [5] covers the state of the
art in anomaly detection methods for high dimensional data
and/or big data. Basora et al. [6] provide a comprehensive tax-
onomy for all major anomaly detection methods: These methods
can be divided into distance-based (including clustering-based),
ensemble-based (including isolation forests [7] and LOF [8]), sta-
tistical and reconstruction-based (including PCA and neural net-
works) anomaly detection methods.

Reconstruction-based methods can be described in a nutshell
as follows: Similar to forecasting, which is a well-studied problem
in the literature, one common approach is to build an (auto-)
regressive model for the time series and to use the prediction
errors as indicators for anomalous behavior. Commonly, the mod-
els used range from simple linear functions [9] to LSTM [10,11]
networks and convolutional neural networks [12]. Other pop-
ular approaches are based on autoencoders (AE), which learn
to compress and reconstruct time series (or segments thereof)
and detect anomalies based on the reconstruction error [13–15].
Several works use variational autoencoders to learn the time
series behavior and compute a reconstruction probability, which
serves as an anomaly score [16–19]. A relatively new area of time
series anomaly detection is concerned with the application of
generative adversarial networks (GANs) [20–22]. Very recently,
the attention mechanism has been applied to capture long-term
temporal correlations [23] and the graph neural networks (GNNs)
are employed to learn the cross-correlations between different
series explicitly [24]. Other popular approaches are based on find-
ing discords in time series using symbolic representations [25–
27].

Today, anomaly detection is used in many application do-
mains. Some recent examples of such works are anomaly de-
tection in avionics [6], in network security and intrusion de-
tection [28,29], in the energy sector [30] and in the financial
domain [31].

1.2. Related work in ECG and TCN

Many articles are concerned with the detection of arrhythmias
in ECG signals. However, work on unsupervised approaches ap-
pears to be less common in this field. The presented methods are
mostly supervised algorithms that are trained to classify different
arrhythmia types. Luz et al. give a comprehensive overview of
various classification approaches for ECGs in [32]. In [33], Hannun
et al. designed a 34-layer convolutional deep neural network to
classify 12 different heart arrhythmia types. However, due to its
nature, the architecture is supervised and requires annotated data
for training. The authors use a massive labeled dataset contain-
ing 91,232 single-lead ECGs from 53,549 patients (not publicly
available). The trained model achieves very high accuracy on a
cardiologist level. Several researchers base their approaches on
the discrete wavelet transform (DWT) [34–37]. Thomas et al. [36]
extract, next to other features (some of which might partially
require expert knowledge, such as the RR-intervals), dual-tree
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Fig. 1. An anomaly example from the ECG data. This is just one type of anomaly out of the set of 9 different anomaly types (to be discussed later in more detail,
see Table 1).
complex wavelet-based features from the ECG signal and train
a neural network for four arrhythmia classes. We found several
works that introduce anomaly detection methods in ECG read-
ings [10,11,38–41]: Chauhan & Vig [38] train an LSTM network
and analyze 1-minute segments of 48 ECG recordings (each about
30 min long) from the MIT-BIH ECG benchmark [42–44]. How-
ever, [10,38] have the drawback that they have to divide the data
into training, validation, and test sets, which have to be divided
further into normal and anomalous subsets. In practice, this leads
to difficulties since expert knowledge will be required to classify
and split the data before the training process. In [11], the ideas
of [10,38] are extended, and also the requirement of different data
splits is eliminated. Sivaraks et al. [41] use motif discovery and
propose an approach for robust anomaly detection in ECG data.

Publicly, there are only relatively few benchmarks for ECG ar-
rhythmia detection available: The MIT-BIH Arrhythmia database
[42–44], the CU Ventricular Tachyarrhythmia Database [45], and
the St. Petersburg INCART 12-lead Arrhythmia Database [42]. We
will use the MIT-BIH benchmark in this work since it contains the
most patients (47 patients) and sufficiently long ECG recordings
(30 min), and it is the most commonly used benchmark in the
literature.

Several earlier works inspired the TCN-AE architecture that is
presented in this paper: While Holschneider et al. applied dilated
convolutions in their ‘‘algorithme à trous’’ algorithm in the field
of wavelet decomposition already in 1990 [46], more recently,
they have also been applied to deep learning architectures, where
the parallels to the non-decimating/stationary discrete wavelet
transform (DWT) are still apparent: van der Oord et al. [47] intro-
duced the WaveNet architecture, which uses dilated convolutions
for the generation of raw audio. Yu & Koltun [48] successfully
employed dilated convolutions to the task of semantic image seg-
mentation. Later, Bai et al. [49] proposed a more general temporal
architecture for sequence modeling, which they named temporal
convolutional network (TCN). Our work is built upon the work of
Bai et al. To the best of our knowledge, no earlier work employs
TCNs in an autoencoder-like architecture. We only found one
approach for time series anomaly detection that is based on
TCNs [50]. However, it does not use autoencoders. Its general idea
is more similar to [10], and [11], which use forecasting errors as
an indicator for abnormal behavior.

2. The TCN Autoencoder

This section introduces the Temporal Convolutional Network
Autoencoder (TCN-AE), describes its main components, and dis-
cusses a few of its properties and application areas for time series
3

analysis. We will start with a baseline architecture and succes-
sively add several enhancements to this architecture. As the name
suggests, TCN-AE is a convolutional architecture. Convolutional
neural networks are broadly and with great success used in
computer vision applications, where other fully connected/dense
architectures commonly suffer from the curse of dimensional-
ity [51,52]. Convolutional nets have several beneficial properties,
such as translation invariance, weight sharing, and computational
efficiency. These properties make them especially suitable for
computer vision tasks such as image recognition, segmentation,
or object detection. Their properties are also helpful for time
series processing, where typically 1D-convolutions are employed.

2.1. Intuition

Conceptually, TCN-AE, as proposed here, is similar to other
autoencoder architectures. However, it differs from regular au-
toencoders because it replaces the fully connected/dense layers
with dilated 1D-convolutional layers. Due to this, the network
can take into account temporal relationships in the data more
naturally and is flexible regarding inputs of variable size. Fur-
thermore, the receptive field of TCN-AE can be easily scaled and
grows exponentially with an only linear increase in the number of
weights, which is especially important for time series containing
long, intricate temporal patterns. Another advantage over other
autoencoders is that TCN-AE usually has fewer weights than
dense AE architectures.

The key idea of TCN-AE is to learn how to efficiently encode
a d-dimensional input sequence of length Ttrain by compress-
ing it along the time axis and possibly also along the feature
axis. Subsequently, TCN-AE attempts to decode the compressed
representation and reconstruct the original input sequence again.

The intuition behind this approach is that due to the bot-
tleneck in the architecture, the network is forced to identify
useful temporal patterns in the data, which in turn allows finding
efficient encodings of the input. The applications of (tempo-
ral) autoencoders are very diverse. In this work, we will focus
on anomaly detection in time series. Other applications could
be time series (sequence) compression or representation learn-
ing [53].

Our proposed TCN-AE architecture consists of several building
blocks, which will be described in the following.

2.2. Dilated convolutions

Convolutional layers in neural networks are comprised of dig-
ital filters, which remove or amplify specific components (fre-
quencies) in a presented signal (for example, an image or a time
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eries). Formally, the filtering process can be described by the
onvolution operation. For a one-dimensional signal x[n] (x[n]
eing the nth element in the signal), x : T → R, where T =
0, 1, . . . , T−1}, the convolution with a (finite impulse response)
ilter h[n], h : {0, 1, . . . , k− 1} → R is usually defined as:

[n] = (x ∗ h)[n] =
k−1∑
i=0

h[i] · x[n− i], (1)

here ∗ denotes the convolution operator, y[n] ∈ R is the output
f the filter, h[i] ∈ R is the ith filter weight and k specifies the
ength of the filter. The convolution operation can be thought of
s sliding a window of length k, which contains the filter weights
[i], over the input sequence x[n] and computing a weighted av-
rage of x[n]with the weights h[i] in each time step. The resulting
utput signal is one-dimensional and of length T −k+1. In order
o obtain an output signal of the same length, the input sequence
s usually padded with zeros before applying the filter. Since the
ilter is only sliding along the time axis, the operation is usually
eferred to as one-dimensional convolution. The filter’s behavior
s determined by h[n] (e.g., low-pass or high-pass characteristics).
he central idea of convolutional neural networks is not to pre-
etermine h[n] but rather to learn suitable filter weights based
n the learning task.
Convolutional layers in neural networks usually deal with

ultivariate input signals x[n] of dimension d, with x : T→ Rd.
n this case, each dimension xj[n] is convolved separately with
ts own sub-filter hj[n], h : {0, 1, . . . , k − 1} → Rd, and y[n]
remaining one-dimensional) is a dot product:

[n] = (x ∗ h)[n] =
k−1∑
i=0

h[i]⊺x[n− i]. (2)

In contrast to the regular convolution operation (as specified
bove), the dilated convolution [48] has an additional parameter,
he so called dilation rate q ∈ N. It defines how many elements
n the input signal x[n] are skipped between filter taps h[i] and
[i+ 1]. The dilated convolution is written as:

[n] = (x ∗q h)[n] =
k−1∑
i=0

h[i]⊺x[n− qi]. (3)

or q = 1 the original convolution operation is obtained.
In many applications also acausal convolutions are used (e.g.

54]). In this case, future values of a sequence x[n] will be pro-
essed to generate output y[n]:

[n] = (x ∗q h)[n] =
k−1∑
i=0

h[i]⊺x
[
n− q⌊i− k/2⌋

]
(4)

n this work, we experimented with causal and acausal convo-
utions for TCN-AE and found acausal convolutions to produce
lightly better results for the investigated ECG anomaly detection
ask. Note that this comes at the cost of slight delays in online
ettings.

.2.1. Dilated convolutional layers in neural networks
The previous section described how a one-dimensional output

ignal y[n] is computed using a filter. In practice, a convolutional
ayer is typically composed of, or is comprising many discrete
ilters, and the individual outputs y[n] are stacked into a so-called
eature map. If a signal x[n] of length Ttrain is passed through a
onvolutional layer with nfilters filters, the resulting feature map
as the dimension Ttrain×nfilters (for a padded signal). The weights
[i] of each filter are considered learnable parameters, commonly
rained using variants of the back-propagation algorithm.
 r

4

Many neural network architectures for sequence modeling
e.g., [47,49]) utilize dilated convolutions to create a hierarchical
emporal model with a large receptive field that is capable of
earning long-term temporal patterns in the input data. The main
dea is to build a stack of dilated convolutional layers, where the
ilation rate increases with each added layer. A common choice
s to start with a dilation rate of q = 1 for the first layer of the
etwork and double q with every new layer. With this approach,
e can increase the receptive field of the model exponentially
ithout reducing the resolution, contrary to pooling or strided
onvolutions. In general, the receptive field r for the causal and
causal case is given by:

rcausal = k2L−1, (5)

acausal = ⌊k/2⌋(2L+1
− 2)+ 1, (6)

here L > 0 is the number of layers. If, for example, we build a
tack of L = 5 dilated convolutional layers with a kernel size of
= 3, the size of the receptive field will be 3 × 24

= 48 for the
ausal case and 26

− 1 = 63 for the acausal setting.
In summary, a convolutional layer can be mainly described by

parameters: the dilation rate q, the number of filters nfilters, and
he kernel size (filter length) k. A convolutional layer maps an
nput sequence x : T→ Rd to an output sequence y : T→ Rnfilters .
ote, that the shape of the output does not depend on k.

.2.2. Relation between dilated convolutions and the DWT
The non-decimating discrete wavelet transform (DWT) is, in

ome sense, related to dilated convolutional neural network ar-
hitectures. The regular DWT decomposes a time series into so-
alled approximation and detail coefficients. By repeated filtering
f the input with low-pass and high-pass filters, one obtains
hierarchical representation of the original signal on different

requency scales.
While the regular DWT downsamples (decimates) the sig-

al after every low-pass filter by a factor of two, the non-
ecimating DWT removes all downsampling units. In turn, the fil-
ers have to be dilated. The dilation rate (which is a power of two)
pecifies the gaps between the filter taps. The non-decimating
WT is usually used in applications where one wants to achieve
ranslation invariance (at the cost of redundancy). Holschneider
t al. [46] proposed an efficient algorithm for computing the
on-decimating DWT using dilated convolutions. Current deep
earning architectures [47–49] based on dilated convolutional
ayers are inspired by the earlier work of Holschneider et al.
ilated convolutional nets also repeatedly filter a signal (e.g., time
eries or image) in a stack of convolutional layers. The dilation
ate q is usually doubled with every further layer.

There are also apparent differences: (a) The filter weights for
he DWT depend on the mother-wavelet choice and are fixed,
hile the weights of convolutional layers are learnable param-
ters. (b) The DWT does not use non-linear activation functions
uch as rectified linear units (ReLU).

.3. Temporal convolutional networks

The temporal convolutional network (TCN) [49] is inspired
y several convolutional architectures [47,55–57], but differs
rom these approaches insofar as it combines simplicity, auto-
egressive prediction, residual blocks, and very long memory.
ssentially, a TCN is a stack of n residual blocks which chain two
ub-blocks sequentially. Each sub-block comprises a sequence of
dilated convolutional layer, a weight normalization layer [58],
ReLu activation function [59], and a spatial dropout layer [60].
urthermore, a skip (residual) connection [61] bypasses the resid-
al block and is added to the its output. A TCN is mainly described
y three parameters: a list of dilation rates (q1, q2, . . . , qL), the
umber of filters nfilters, and the kernel size k. The output of each
esidual block and the final output is a sequence y : T→ Rnfilters .
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.4. Baseline TCN-AE

We use TCN as a building block for a baseline temporal autoen-
oder, in the following referred to as baseline TCN-AE. In later
ections, we will modify the baseline TCN-AE and add further
nhancements to the architecture.
The baseline TCN-AE consists of an encoder network enc(·) and

decoder network dec(·).
The encoder enc(·), shown in Fig. 2, left, attempts to generate

compact representation that captures the main characteristics
f the input sequences and allows a reasonably good reconstruc-
ion in later steps. In order to learn the important features in a
equence, it is necessary to identify short-term as well as long-
erm patterns. The encoder takes an input sequence, passes it
hrough a TCN network, reduces the dimension of the feature
ap by applying a 1 × 1 convolutional layer1 [62,63] and finally
own-samples the series along the time axis by a specified factor
sing an average-pooling layer. The number of filters c in the
× 1 convolution layer specifies the dimension of the encoded

epresentation, and the sample rate s determines the factor by
hich the length T of the series is reduced. Hence, the original

nput x[n] will be compressed into an encoded representation
[n] = enc(x[n]), where g : {0, 1, . . . , T/s− 1} → Rc .
The decoder dec(·), shown in Fig. 2, right, attempts to re-

onstruct the original input sequence, using the output of the
ncoder as input. First, the length of the original series has to be
estored. We use a simple sample-and-hold interpolation for this
urpose, which duplicates each point in the series s times. Sub-
equently, the upsampled sequence is passed through a second
CN block, which has the same structure as the TCN block in the
ncoder (but untied/independent weights). Finally, to restore the
riginal dimension d, another 1 × 1-convolutional layer with d
ilters is used to obtain the reconstruction (the output) x̂[n] =
ec(g[n]), x̂ : T→ Rd.
For the sake of simplicity, the TCN architecture of the en-

oder and the decoder is the same. However, this identical struc-
ure is by no means necessary. In principle, the TCN can be
arameterized differently in the encoder and decoder.

.5. Unsupervised anomaly detection with TCN-AE

Due to the bottleneck in the architecture, the training proce-
ure forces TCN-AE to learn compressed encodings of the input
equences, which allow accurate reconstruction. Intuitively, we
xpect that TCN-AE reconstructs recurring nominal patterns in
time series with only small errors. It focuses on minimizing

he reconstruction error of the nominal data, which are in the
ast majority during training. On the other hand, when TCN-
E observes patterns that significantly differ from the norm, we
xpect higher reconstruction errors.
To discover abnormal behavior, we slide a window of length
over the reconstruction error and collect the ℓ-dimensional

ectors in an error matrix E ∈ Rℓ×d. The purpose of the sliding
indow is to smoothen noisy events that might occasionally
ppear. The error matrix E is passed to the outlier detection
lgorithm, which identifies abnormal/anomalous points in the ℓ-
imensional space. The outlier detection algorithm outputs an
nomaly score, which decides the occurrence of an anomaly
ased on some threshold. After experimenting with most of
ell-known outlier detection algorithms, e.g., local outlier factor
LOF) [8], we discovered that a simple approach based on the
ahalanobis distance (line 16 in Algorithm 1) delivers the best

esults. An advantage of the Mahalanobis distance is that it is

1 A 1 × 1 convolution is a weighted average over all feature maps, taken
at every time point. The weights are learnable parameters.
 a

5

Algorithm 1 General anomaly detection algorithm using the
TCN-AE architecture.
1: Adjustable parameters:
2: Mτ : anomaly threshold (see Section 3.3), ℓ: error

window length
3: Ttrain: length of training sub-sequences, B: batch size
4:
5: function anomalyDetect(x[n]) ▷ x : T→ Rd,

T = {0, 1, . . . , T − 1}
6: Construct model tcnae() and Initialize the trainable

parameters
7: Xtrain ← { Sub-sequences of length Ttrain taken from x[n] }
8: for {1 . . . nepochs} do
9: train(tcnae,Xtrain) ▷ Train with random mini-batches

of size B
0: end for
1: x̂[n] ← tcnae(x[n]) ▷ Encode and reconstruct x[n]
2: e[n] ← x[n] − x̂[n] ▷ reconstr. error e : T→ Rd

3: E[n] ← slidingWindow(e[n], ℓ) ▷ E : T→ Rℓ×d

4: E′[n] ← reshape(E[n]) ▷ E′ : T→ Rℓ·d

5: µ,Σ← estimate(E′[n]) ▷ Mean µ ∈ Rℓ·d, Cov. Mat.
Σ ∈ Rℓ·d×ℓ·d

6: M[n] ← (E′[n] − µ)⊺Σ−1(E′[n] − µ) ▷ Mahalanobis
distance

7: a[n] ←
{
0 if M[n] < Mτ

1 else
▷ Binary anomaly flags

8: return a[n] ▷ Return anomaly flag for each time series
point

9: end function

parameter-free and does not require any particular assumptions
about the data distribution (such as normality). The Mahalanobis
distance only requires the invertibility of the covariance matrix.2
We summarize the anomaly detection algorithm for TCN-AE in
Algorithm 1.

Note that although we train TCN-AE with the complete time
series, the overall anomaly detection algorithm consisting of TCN-
AE and Mahalanobis distance calculation is entirely unsupervised.
The training procedure does not pass anomaly labels to the al-
gorithm at any time. Only for selecting an appropriate anomaly
threshold on the Mahalanobis distance, we permit all algorithms
to use 10% of the anomaly labels, as described later in Section 3.4.

2.6. Enhancements of the baseline TCN-AE

2.6.1. Skip connections
While experimenting with the encoder and decoder’s dilation

rates, we noticed that the performance of the baseline TCN-AE is
somewhat sensitive to the choice of the maximum dilation rate
qmax. We believe that this problem occurs because only the TCN’s
final dilated convolutional layer is passed on to the following
layer, i.e., the original TCN does not provide any mechanisms
for feature reuse. However, especially for TCNs, which process a
time series signal at different time scales, it might be detrimental
to solely use the last dilated convolutional layer’s output since
other time scales might also carry essential information. Instead,
it should be possible to access the features at all time scales.

2 In the extreme case where the number of signals in the series is larger than
he window size l, the maximum likelihood estimate covariance will be singular.
o resolve this issue, one can always compute the pseudo-inverse of the singular
atrix or even better, resort to the so-called regularization technique to learn
non-singular one.
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Fig. 2. Architecture of the baseline TCN-AE as described in Section 2.4. The input of TCN-AE is a sequence x[n] with length T and dimensionality d = 2 for the ECG
ata. The layers ‘‘conv’’ and ‘‘output’’ are 1 × 1 convolutions with c = 4 and d = 2 filters, respectively. Afterwards, the output of the encoder is downsampled by

an average-pooling layer (‘‘pool’’) with a pool size s = 32.
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To provide for the possibility of feature reuse in TCN-AE, we
add so-called skip connections to our architecture. A skip connec-
tion copies the output of a particular layer and concatenates it to
the input of a subsequent network layer. In our setup, we use a
concatenation layer at the end of the encoder and decoder, which
collects the outputs of all previous dilated convolutional layers.

In the encoder shown in Fig. 3, we add skip connections
from every dilated convolutional layer to the encoder’s bottle-
neck (after reducing the number of channels to 16 by a 1 × 1-
convolution), where the outputs of the individual layers are con-
catenated along the channel axis. The bottleneck reduces the
number of channels of the concatenated outputs with a 1 × 1-
convolution and downsamples the resulting signal to obtain a
compressed encoding.

In the decoder shown in Fig. 4, we also place skip connections
from each dilated convolutional layer to the output. Lastly, a
1 × 1-convolution reconstructs the time series with the original
dimension d.

Relation to other architectures. Many modern DL architectures
adopt skip connections. In ResNets [61], for example, shortcut
connections perform an identity mapping, skipping one or more
layers. Their outputs are then added to the skipped layers’ outputs
(not concatenated as in our approach). ResNets were among the
first architectures that address the so-called degradation prob-
lem [61] (a problem observed in practice, where very deep neu-
ral networks surprisingly produce higher training errors than
shallow nets) and have shown to improve the results on many
problems.

In a DenseNet [64], each layer uses the output of all preceding
layers as input and passes on its output to all subsequent layers.
Due to this structure, many direct connections are necessary (in
a network with L layers, there are L(L+ 1)/2 direct connections).
Nonetheless, the authors could significantly reduce the number
of required parameters in the overall network by decreasing
the number of filters in all layers. DenseNets address similar
problems as ResNets and are insofar more similar to our TCN-AE
in that they also concatenate the feature maps of previous layers
and do not add them (as in ResNets).

2.6.2. Dilation rate ordering
In the setup of the baseline TCN-AE, we use the identical TCN

architecture for the encoder and decoder, with the same number
of filters nfilters, filter lengths k and dilation rates qi. In the decoder
f the baseline TCN-AE, right after the upsampling layer, the first
ilated convolutional layer has a dilation rate of q = 1. However,
6

if we keep in mind that the upsampling layer uses sample-and-
hold interpolation, which repeats each sample s = 32 times, a
ilation rate of q = 1 might be ineffective. Due to the upsampled

signal’s coarse structure, the filters are mostly moved over ranges
of identical values. A straightforward yet beneficial enhancement
is to reverse the dilation rates in the decoder. Hence, now the
last dilated convolutional layer before the output layer will have
a dilation rate q = 1, the penultimate layer q = 2, and the first
layer (after the upsampling layer) a dilation rate of 2L−1. With this
pproach, larger dilation rates are used on coarser levels. In our
rchitecture with L = 7 dilated convolutional layers, we use the
ilation rates (1, 2, 4, . . . , 64) for the encoder, and the dilation

rates (64, 32, 16, . . . , 1) for the decoder (see the green sticks in
Figs. 3 and 4).

2.6.3. Utilizing hidden representations for the anomaly detection
task

While studying the relation of dilated convolutions to the
DWT (Section 2.2.2), we noticed some similarities to our prior
work [65]: In that work, we used the DWT to analyze a time series
signal on different frequency scales to detect anomalous behavior.
Each frequency scale was analyzed independently, and the aggre-
gated results then led to an anomaly score for each data point of
the time series. Similarly, transferred to the TCN-AE architecture,
one could imagine that each dilated convolutional layer’s output
corresponds to an individual frequency/time scale, which already
might carry useful information for the anomaly detection task.
Hence, it could be sensible to look at the reconstruction error
signal of TCN-AE and also individual hidden representations of
the network to identify anomalies.

We take the output of each map-reduction layer (see Sec-
tion 2.6.4) in the encoder and reduce the feature map channels
with a 1 × 1-convolution to size one. This is like taking each
blue bar from Fig. 3 and reducing it to one output channel. We
then stack each of the reduced outputs onto the reconstruction
error signal. If there are seven dilated convolutional layers in the
encoder (q = 1, 2, . . . , 64) and the reconstruction error signal
is two-dimensional, seven additional hidden representations will
be stacked onto the reconstruction error signal. We end up with
a 9-dimensional signal to which we apply Algorithm 1. With this
approach, we cannot only search for anomalies in the reconstruc-
tion error but also find irregularities in various hidden feature
representations of the input time series.

Note that this enhancement is not shown in Figs. 3 and 4 to
keep the complexity of the figures manageable.
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Fig. 3. The architecture of TCN-AE’s encoder. The two-dimensional input ECG signal (purple) of length T is passed through a stack of dilated convolutional layers
light orange, dConv1–dConv7). The light green boxes (infront of dConv1–dConv7) represent the filters of the dilated convolutions. Each dilated convolutional layer
s followed by a 1 × 1 convolution, which reduces the number of channels to 16. The outputs of the 1 × 1 convolutions are also concatenated in the block concat1
blue). The dark blue blocks (inside concat1) are identity mappings, not altering the tensors. Overall, seven tensors are concatenated, resulting in 7 · 16 = 112
hannels. Finally, the concatenated tensor is compressed into the final encoded representation (red). The compressed representation of the original input is then
assed to the decoder (Fig. 4).
Fig. 4. The architecture of TCN-AE’s decoder. A compressed representation is given as input (purple) and then upsampled (upsamp, red layer) to the original length
T . Similar to Fig. 3, a stack of dilated convolutional layers operates on the upsampled signal, and the outputs of the 1 × 1 convolutions are concatenated in the
oncat3 block. Finally, the output layer (convolution with linear activation) reconstructs the original two-dimensional ECG sequence (last yellow block, decoded).
.6.4. Feature map reduction
A more technical enhancement of TCN-AE is the introduction

f convolutional map reduction layers (commonly referred to as
× 1 convolutional layers) [62,63], which are regularly used in
ractice to reduce the dimensionality (the number of channels)
f feature maps and effectively reduce the number of trainable
arameters in the overall architecture. We experimented with
× 1 convolutional layers and found that they allow reducing the
verall number of parameters in the network without sacrificing
erformance. Consequently, we could observe a slight improve-
ent in the training time. We place 1 × 1 convolutions after
ach dilated convolutional layer, which reduces the number of
hannels from 64 to 16.

.6.5. Anomaly score baseline correction
While visualizing the anomaly score of the TCN-AE model for a

ew time series, we noticed that the anomaly score did not always
ave a constant baseline, as one would expect. We observed slight
rifts in the baseline, which made it hard in some cases to find a
uitable threshold value. One reason for this phenomenon could
e that certain statistical properties of the signal (such as the
andom noise) change over time. Since these drifts correspond to
ow-frequency components in the anomaly score, a simple way
o remove them is to filter the anomaly score. We decided to use
second-order Butterworth filter with a cutoff frequency of 1Hz
o remove the baseline wandering.
7

3. Experimental setup

3.1. The MIT-BIH Arrhythmia database

The MIT-BIH Arrhythmia database [42–44] contains two-
channel electrocardiogram (ECG) signals of 48 patients of the
Beth Israel Hospital (BIH) Arrhythmia Laboratory. Each signal was
recorded with a sampling frequency of 360 Hz and has a length of
approximately half an hour, which corresponds to 650000 data
points each. The two channels recorded are the modified limb
lead II (MLII) and a modified lower lead V1, in a few cases V5.
Each recording contains on average 2160 ± 365 heartbeats, and
in total, there are 54 087 heartbeats.

There are many different events in all ECG time series, which
human experts labeled. The whole list of heartbeat annotations
is found in [43]. Our unsupervised approach investigated in this
paper rests on the assumption that most time-series data is nor-
mal (nominal) and that anomalous events are relatively seldom.
Therefore we select from the 48 time series (patients) only those
25 with 250 or fewer anomalous events. The selected time series
contain 721 events from nine anomaly classes listed in Table 1. A

more detailed database description can be found in [44].
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nomaly types in the 25 ECG signals considered for the experiments. The
escriptions are taken from [43]. The second column shows the overall number
f the various anomaly types for the 25 considered ECG signals. All anomalies
isted in this table are collective anomalies, as described in Section 1.
Code # Description

a 11 Aberrated atrial premature beat
A 235 Atrial premature beat
e 10 Atrial escape beat
f 22 Fusion of paced and normal beat
F 25 Fusion of ventricular and normal beat
J 3 Nodal (junctional) premature beat
V 374 Premature ventricular contraction
x 19 Non-conducted P-wave (blocked APC)
| 22 Isolated QRS-like artifact

Σ 721

3.2. Preprocessing and data preparation

Since the raw 2-dimensional ECG signals contain a lot of noise
nd exhibit non-stationary behavior, we perform a few prepro-
essing steps before training the models. Initially, each signal
s filtered with a bandpass filter parameterized with the cutoff
requencies of 2 and 20 Hz. These are commonly used values
or the processing of ECG signals in practice (cf. Pan–Tompkins
lgorithm [66]). This bandpass filter removes most of the high-
requency noise in the signal and drifts in the baseline. To reduce
he training time of each model and the model complexity, we
own-sample each ECG signal by a factor of nsamp = 5. This
educes the length of the ECG signal from originally 650 000 time-
teps to just T = 130 000 time-steps without losing too much
nformation from the signal.

We normalize each input time series to zero mean and unit
ariance before generating the training samples. Finally, we ex-
ract training samples of length Ttrain using a sliding window.

.3. Algorithmic setup

We compare our unsupervised TCN-AE algorithm to ten other
nsupervised anomaly detection algorithms, of which four are
L-based and 6 are not. The DL-based models are: DNN-AE [67],
STM-ED [14], LSTM-AD [11], and NuPIC [68]. They are based
n deep autoencoders (DNN-AE), LSTM networks (LSTM-ED and
STM-AD), and hierarchical temporal memory, HTM (NuPIC).
All anomaly detection algorithms are trained in an unsuper-

ised fashion. The actual anomaly labels are only used at test
ime. The training process passes the complete time series to the
nomaly detection algorithm, and the algorithm learns a model
or the provided data and returns an anomaly score for each data
oint of the time series. We trained all DL algorithms, except
uPIC (which does not support GPU capabilities), on a Tesla P100
PU. The remaining algorithms are, if not mentioned otherwise,
arallelized and run on 40 Intel(R) Xeon(R) E5-2699 CPU cores
ith 2.20 GHz each. All algorithms require a set of hyperpa-
ameters, which we will describe in the following. Parameters
ommon to all algorithms are summarized in Table 2. We tuned
he parameters (except for TCN-AE and NuPIC) using the hyper-
pt library [69]. For TCN-AE, we manually investigated different
arameter settings, and for NuPIC, we use the recommended
arameter settings [70].
To obtain statistically sound results, we run each anomaly

etection algorithm ten times on all 25 ECG time series.
The non-DL algorithms are parameterized as described below.

f not mentioned otherwise, we use the default parameter settings
pecified in the corresponding papers or packages. We combine
he non-DL approaches with sliding windows with a window
8

size w to generate meaningful time series embeddings. These
embeddings are passed to the outlier detection algorithms.

SORAD [9]: SORAD is an online time series anomaly detection
lgorithm based on recursive least squares (RLS) [71, Chapter 13]
stimation. It predicts the target horizons H = (1, 3, . . . , 49) and

builds an error model based on these predictions. It uses a sliding
window of size w = 128 and a forgetting factor of λ = 0.98.

LOF [8]: We use the scikit-learn [72] (v0.23.2) implementation
of the Local Outlier Factor (LOF) algorithm. The sliding window
size is set to w = 64, the number of neighbors to 20, and the leaf
size to 30.

IF [7]: The Isolation Forest (IF) model (scikit-learn [72],
v0.23.2) uses a number of 1000 base estimators in the ensemble
and a sliding window size of w = 50.

GMM & BGMM: For the Gaussian Mixture Model (GMM) and
the variational Bayesian Gaussian Mixture Model (BGMM), we
again use scikit-learn (v0.23.2) [72] and set w = 64, the number
f mixture components to 5, and the number of initializations to
,
OCC-SVM [73]: A fast GPU-based implementation of the One-

lass Classification Support Vector Machine (OCC-SVM) is avail-
ble in the ThunderSVM [74] Python package (v0.3.12). We use
CC-SVM with a polynomial kernel K (x, y) = (γ x⊺y+ c)d, where
= 3, c = 1, and γ = 1/128 (default for the selected window

ize of w = 64).
The DL algorithms are configured as follows:
DNN-AE [67]: We use a PyTorch [75] implementation for the

nomaly detection algorithm based on a deep autoencoder [13].
he algorithm requires several parameters, which we choose as
ollows: a hidden size of h = 6 for the bottleneck (which results in
compression factor of Ttrain/h = 25 for each sequence). Finally,

we set %Gaussian = 1%, which specifies that 99% of the data is used
to estimate a Gaussian distribution for the anomaly detection
task.

LSTM-ED [14] is also implemented using PyTorch and has the
following parameter setting: %Gaussian = 3%. Both encoder and
decoder use a stacked LSTM network with two layers, each LSTM
layer having 50 units.

NuPIC [68]: Numenta’s anomaly detection algorithm has a
broad range of hyper-parameters that have to be set. We use the
parameters recommended by the authors in [70]. It is possible
to tune the parameters with an internal swarming tool [76].
However, this is a time-expensive process that is not feasible for
the large benchmark.

LSTM-AD [11]: A 2-layer LSTM network with 256 units in the
first layer and 128 units in the second layer is used. The target
horizons are chosen to be H = (1, 3, . . . , 49).

TCN-AE (baseline): The settings of the baseline TCN-AE model
(Fig. 2) mostly correspond to the settings of the final variant.
Only the maximum dilation rate is chosen smaller so that q =
(1, 2, . . . , 32) and the number of filters for each dilated convolu-
tional layer is reduced to nfilters = 32. Nonetheless, the number
of trainable parameters of the baseline TCN-AE is larger due to
the two consecutive layers which are created for each individual
dilation rate.

TCN-AE (final): We implemented TCN-AE using the Keras [77]
& TensorFlow framework [78]. An overview of the architecture
with its parameters is given in Figs. 3 and 4. In both encoder and
decoder we use 7 dilated convolutional layers each, with the di-
lation rates q = (1, 2, . . . , 64) (encoder) and q = (64, 32, . . . , 1)
(decoder), nfilters = 64 filters with a kernel size of k = 8, and
a ReLU activation. Each dilated convolutional layer is followed
by a 1 × 1 convolutional layer with nfilters = 16 filters, which
reduces the feature maps from 64 to 16. The sample rate of the
average pooling layer is s = 32 and the error window length for
the anomaly detection in Algorithm 1 is ℓ = 128. To verify the
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ummary of the common parameters of the neural-network-based anomaly
etection algorithms used in this work.
Algorithm B nepochs Ttrain Loss Optimizer Initializer

TCN-AE 64 10 1024 logcosh Adam Glorot normal [79]
DNN-AE 100 25 150 MSE Adam U(−

√
k,
√
k), k = 1

fanin

LSTM-ED 100 10 30 MSE Adam U(−
√
k,
√
k), k = 1

fanin
LSTM-AD 512 25 256 MAE Adam Glorot uniform [79]

training process and to ensure that the model does not overfit,
we track the training and validation loss for the individual time
series. In Fig. A.13, we plot the logcosh loss exemplarily for
several time series.

3.4. Performance measures

In the MIT-BIH benchmark, only the R-peaks of the QRS com-
lex are labeled as either normal or with the corresponding
rrhythmia type. However, it is usually impossible to locate an
nomaly at exactly one point of the time series. In most cases,
n anomaly is a longer temporal pattern that is unusual given its
emporal context. Therefore it is not meaningful to label individ-
al points of the time series as anomalous. Instead, we specify
n anomaly window for each anomaly. The anomaly window
s centered around the given label. It contains 400 (80, after
ownsampling the time series) data points before and after the
abel, which corresponds to approximately 2 s (or roughly one
eartbeat before and after the label). The task of the anomaly
etection algorithms is to detect the anomalies within the speci-
ied anomaly window. One or several correct detections within an
nomaly window will be counted as one true positive (TP). On the
ther hand, if an algorithm fails to identify an anomaly within the
indow, a false negative (FN) will be attributed. Any detection
utside of an anomaly window will be counted as false positives
FP). If not stated otherwise, we sum TP, FN, and FP over all 25
CG time series. From these three quantities, the well-known
etrics precision (Prec), recall (Rec), and F1-score are derived:

Prec =
TP

TP+ FP
, Rec =

TP
TP+ FN

, F1 = 2 ·
Prec · Rec
Prec+ Rec

. (7)

Each algorithm outputs an anomaly score for each point in the
ime series. Low values indicate nominal behavior, and high val-
es indicate that an unusual situation has been observed. In order
o classify each point as either nominal or anomalous, a so-called
nomaly threshold is required. However, the threshold trades
ff false negatives (recall) and false positives (precision). The
lgorithms are typically compared based on the so-called equal
ccuracy (EAC), where precision and recall are approximately
qual to compare algorithms based on these two objectives. We
ill use EAC as one performance indicator. Another possibility is
o select an optimal threshold in a supervised manner for a small
raction of the time series data and then apply this threshold
o the overall time series. If not stated otherwise, we select a
egment containing 10% of a time series and find the threshold
hich maximizes the F1-score on this small subset. Since the
esults may vary, depending on which 10%-segment is used, we
epeat the whole evaluation procedure ten times and average the
esults: adjust the threshold on 10% of the data, evaluate on the
emaining 90% of the data.

We assess the significance of the results with the
on-parametric Wilcoxon signed-rank test [80] and report the
-values.
 m

9

Table 3
Summary of all TCN-AE variants.
Variant Section Comment

Baseline 2.4 Baseline algorithm based on TCNs without any
enhancements

noSkip 2.6.1 Skip-Connections removed from the
architecture

noInvDil 2.6.2 Use same dil. rate ordering for encoder &
decoder

noLatent 2.6.3 Do not use hidden representations for anomaly
detection

noRecon 2.6.3 Only use hidden representations of encoder for
anomaly detection

noMapReduc 2.6.4 Do not use the Map reduction layers
noAnomScoreCorr 2.6.5 Do not correct the baseline of the anomaly

score
Final 2.6 Final TCN-AE with all enhancements

4. Experiments, results & discussion

We started our experiments with the baseline TCN-AE model
(Section 2.4). The initial results on the ECG benchmark were
already promising, but the algorithm still performed similar to
LSTM-AD and DNN-AE concerning the F1-score (Table 5), leaving
room for improvements. While analyzing the baseline TCN-AE,
we developed several ideas for improvements, which we in-
troduced in Section 2.6. The resulting (final) TCN-AE showed
significantly improved performance, achieving higher precision
and recall on 15 out of 25 time series of the benchmark. We per-
form a more detailed analysis of the contribution of the individual
enhancements in the following Section.

Fig. 5 depicts an example for ECG signal #1, where the TCN-
AE algorithm has difficulties reconstructing the original time
series due to an actual anomaly present. In this case, the large
construction error is correctly interpreted as anomalous behavior.
For the same example, we visualize selected activations of several
layers inside the trained TCN-AE in Fig. 6. While the ECG’s general
patterns are still visible in the initial layers of the encoder, these
disappear in later layers, and the activations do not seem to carry
any information appearing useful to the human eye. After being
passed through the bottleneck and upsampled again, only a 4-
channel (from which one is depicted in the graph) step-shaped
signal remains. However, remarkably, the decoder can almost
accurately restore the original input sequence solely from this
coarse representation (sixth row in the plot). Only the abnormal
pattern is incorrectly reconstructed, which results in a significant
reconstruction error that can easily be detected.

4.1. Contribution of the individual TCN-AE components

In the following, we describe the impact of individual en-
hancements on the final TCN-AE, which we introduced in Sec-
tion 2.6 (see Table 3).

Although it is challenging to accurately measure each ele-
ment’s effect on the final result (since there might be some
interaction effects between elements3), we can approximately
quantify the improvements with the following approach: In order
to measure the contribution of component C on the final result,
we run TCN-AE on the benchmark with this specific component
turned off. If the component has a positive impact on the model,
we expect a poorer result, and the differences in precision, re-
call, and F1-score serve as a rough indicator for the contribution
of the component. Additionally, the p-value of the one-sided

3 We assume that the overall contribution of the individual components is
arger than our estimations due to the interaction effects which we cannot
easure.
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Fig. 5. Excerpt showing how the final TCN-AE model reconstructs the modified limb lead II (MLII) and the modified lead V1 of ECG signal #1. TCN-AE has difficulties
in reconstructing actual anomalous behavior (highlighted with the red shaded area). Due to the resulting large error, the algorithm later correctly detects an anomaly
(true positive).
Fig. 6. Activations inside the trained final TCN-AE model for several layers of the network. For each dilated convolutional layer, we plot the channel (signal) with
the largest mean absolute activation. If we compute and plot the mean over all channels, we get structurally relatively similar results. The rows dConv1–dConv7
refer to the activations of the dilated convolutions inside the encoder, while dConv8–dConv14 are dilated convolutional layers inside the decoder. The input signal
contains an anomaly (atrial premature beat), highlighted with the red-shaded vertical bar. The decoder fails in reconstructing this segment of the time series, which
results in a significant deviation between the original and reconstructed signal.
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Wilcoxon test signalizes the significance of the result. In Table 4,
we summarize the different variants of the TCN-AE algorithm.

Overall, all the individual enhancements significantly improve
he performance of TCN-AE on the ECG benchmark. As summa-
ized in Table 4, the precision, recall and F1-score all improve
y around 10%. All enhancements have a significant impact on
he increase in performance, as indicated by the corresponding
-values. The p-values are also illustrated graphically in a heat
ap in Fig. 7 for all 25 time series of the benchmark. We can see

hat the algorithm achieved an improvement for most time series.
10
The exact F1-scores for each TCN-AE variant and time series can
e found in Table A.3. This table also highlights the time series
or which the p-values are above the significance level of 0.05.

kip connections. The skip connections in TCN-AE allow the last
ayers of the encoder and decoder to access all prior layers (hav-
ng different dilation rates) directly. As shown in Table 4 and
ig. 7, this improvement has the highest impact on the perfor-
ance of TCN-AE: Without skip connections, the F1-score drops

from F ≈ 0.93 to F ≈ 0.86. However, for the model without the
1 1
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Fig. 7. Heatmap, showing the p-values for the comparison of our final TCN-AE model to various algorithms and other variants of TCN-AE for all 25 ECG signals of
ur benchmark. We use a one-sided Wilcoxon signed-rank test for the F1-scores of ten runs each. The test has the null hypothesis that the median F1-score of our

final TCN-AE is smaller (than the compared algorithm) against the alternative that the median F1-score is larger. The first ten rows represent anomaly detection
algorithms from the literature, while the remaining rows are for different variants of the TCN-AE algorithm. The final TCN-AE model is the model with all extensions
(that are switched off one at at time in the last six rows) switched on. In the cases where the p-value is below the significance level of α = 0.05, the tiles are
colored black (indicating a significantly higher performance of TCN-AE). White tiles indicate that the F1-scores of TCN-AE and the compared algorithm are exactly
the same. The exact F1-scores are given in Tables 8, A.2, and A.3.
Table 4
Impact of the individual TCN-AE components for the ECG Data (mean and standard deviation of 10 runs). The results shown here are for the sum of TP, FN and FP
over all 25 time series and were obtained such that an approximate (difference of less than 1% in precision and recall) equal accuracy (EAC) is achieved for each
algorithm and time series.
Algorithm TP FN FP Prec Rec F1 p

Baseline 597.5± 5.1 123.5± 5.1 129.0± 5.2 0.822± 0.007 0.829± 0.007 0.826± 0.007 2.531e−3
noSkip 622.4± 5.7 98.6± 5.7 102.9± 5.7 0.858± 0.008 0.863± 0.008 0.861± 0.008 2.531e−3
noLatent 629.5± 5.2 91.5± 5.2 95.3± 5.4 0.869± 0.007 0.873± 0.007 0.871± 0.007 2.531e−3
noAnomScoreCorr 644.2± 3.6 76.8± 3.6 83.2± 3.7 0.886± 0.005 0.893± 0.005 0.890± 0.005 2.531e−3
noInvDil 653.6± 1.9 67.4± 1.9 72.2± 1.9 0.901± 0.003 0.907± 0.003 0.904± 0.003 2.531e−3
noRecon 656.9± 2.9 64.1± 2.9 69.9± 2.9 0.904± 0.004 0.911± 0.004 0.907± 0.004 2.531e−3
noMapReduc 660.7± 1.3 60.3± 1.3 65.1± 1.4 0.910± 0.002 0.916± 0.002 0.913± 0.002 8.302e−3
Final 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003 –
t
o

a
d

skip-connections, we had to decrease the number of filters from
nfilters = 64 to nfilters = 32; otherwise the results would be even
worse.

Note that in our setup, it is also principally possible to add
all feature maps which are passed through the skip connections
(since all feature maps have the same shape) instead of concate-
nating them. However, we have found that adding the feature
maps (F1 = 0.908 ± 0.005) leads to slightly worse results than
oncatenation (F1 = 0.926 ± 0.003). One advantage of using
oncatenation might be that the network can learn to ignore
ertain channels in the following layer if they are irrelevant to
he learning task.

We also experimented with different variants of a dense TCN-
E similar to a DenseNet [64] (connecting all dilated convolu-
ional layers with the preceding ones). However, we decided
o no longer pursue this approach since the dense connections
ncreased the number of parameters and the computation time
ignificantly without considerably improving the results.
Although our primary purpose for the introduction of skip

onnections is to reduce the sensitivity towards the maximum
ilation rate and to enable the encoder/decoder to reuse the
eatures at different time scales, as a side effect, our TCN-AE
rchitecture might also benefit from other advantages associ-
ted with ResNets [61] or DenseNets [64]. Some of the observed
mprovements might be due to a smoother curvature of the
oss landscape [81], alleviation of the vanishing/exploding gra-
ient problem & degradation problem due to gradient shortcuts
 a

11
hrough the identity mappings of the skip connections, reduction
f parameters, and others.
We also tested higher dilation rates up to qmax = 1024 and

found (apart from the higher computation time and memory
requirements4) that the results remained almost the same. Only
for qmax = 1024 we could observe a slight drop in the overall
F1-score, from F1 ≈ 0.93 to F1 ≈ 0.90. Since the results do not
change significantly with a larger stack of dilated convolutional
layers, this might imply that the TCN-AE model is capable of
learning to select the suitable features from the important time
scales and to ignore the remaining time scales which do not carry
directly relevant features. In the baseline version, where no skip
connections were employed, the results significantly deteriorated
for inappropriate (too large/small) choices of qmax.

Dilation rate ordering. In Fig. 7, we can see that this reversed
dilation rate scheme improves the results on most of the con-
sidered 25 time series. While the reason for the improvement is
not entirely apparent yet, we assume that a larger dilation rate is
beneficial for the coarse step-shaped signal we have in the first
layers of the decoder, and a lower dilation rate is essential when
we attempt to reconstruct the details of the original signal.

4 Since the receptive field of the model increases with larger dilation rates,
lso longer training sequences are required. (We assume that this is also partially
ue to the artifacts induced when the filters move within the zero-padded
reas.)
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etecting anomalies in hidden representations of time series. As
iscussed in Section 2.6.3, we noticed that there are some similar-
ties between the (stationary) discrete wavelet transform (DWT)
nd DL architectures, which use stacks of dilated convolutional
ayers. In [65], we used the DWT to decompose a time series
nd look for anomalous behavior on different frequency scales.
imilarly, we can also utilize the outputs of the individual dilated
onvolutional layers, which process the time series on different
ime scales. The general idea is that anomalies might become
ore apparent on some time scales than on others. One can
lready detect anomalous behavior on these hidden represen-
ations rather than relying solely on the reconstruction error.
n our first experiment, we used the encoder’s outputs of the
ilated convolutional layers, reduced their number of channels
o one (with a 1 × 1 convolution), and stacked them on top of
he reconstruction error e[n] (line 12 in Algorithm 1). Although
e observe a drop in the F1-score for 3 ECG signals (#1, #16,
48) in Fig. 7 (Table A.3), the overall results suggest that this
pproach generally improves the results (Table 4). The overall
1-score increases from F1 = 0.89 to F1 = 0.93 and the mean
median) F1-score is significantly higher (Fig. 7 & Table A.3).

Similarly, in our next experiment, we tried also to utilize
he decoder’s hidden representations. However, this did not fur-
her affect the algorithm’s performance, and we discarded this
pproach again.
We made another interesting observation: If we entirely re-

ove the decoder after training TCN-AE and solely use the out-
uts of the encoder’s dilated convolutional layers to detect
nomalies in the time series, still decent results can be ob-
ained. Table 4 shows that the F1-score only drops by about 0.02,
lthough the size of the model (and the computational cost for in-
erence) is effectively halved. This observation might be interest-
ng for practical applications, where memory and computational
esources are constrained.

ap reduction layers. Although the primary purpose for the map
eduction layers (Section 2.6.4) was to reduce the number of pa-
ameters in the overall model, as a side effect, we could observe a
light improvement in the overall performance, when considering
he sum over all TP, FP, and FN. However, the improvement is
maller than for the other previously discussed enhancements.
he mean (median) F1-score does not increase, as shown in Fig. 7
Table A.3).

nomaly score baseline correction. Also, the correction of the
nomaly score baseline using a Butterworth filter, as described in
ection 2.6.5, has a notable impact on the final results. Although
here is only a significant improvement for 7 out of 25 time
eries (Fig. 7), the overall F1 drops by around 4% if we turn
ff the baseline correction of the anomaly score, as reported
n Table 4. Instead of using a filter, we also tested the more
dvanced baseline correction algorithm by Zhang et al. [82], and
btained results which did not significantly differ (F1-score of
.920± 0.003).

.2. Comparison to other algorithms

In Table 5, we summarize the results for all algorithms. The ta-
le is sorted according to the F1-score and shows the p-values for
omparing the F1-scores of the individual algorithms with TCN-
E. The first observation we can make is that TCN-AE (baseline
nd final variant) outperforms the other algorithms significantly
p-value < 0.05). On average, TCN-AE detects 81 anomalies more
han the second-ranked algorithm, LSTM-AD, while at the same
ime also producing 80 fewer FPs. The overall F1-score of TCN-AE
s around 15% higher than of DNN-AE and even 20% higher than
f LSTM-ED. From the non-DL algorithms, LOF obtains the best
esults, outperforming the DL algorithms NuPIC and LSTM-ED. But
verall, the DL approaches appear to have a slight advantage on
he ECG benchmark.
12
4.2.1. Precision–recall curves
Since the anomaly threshold trades off FNs (recall) and FPs

(precision), another way of showing the performance of an
anomaly detection algorithm is to vary the threshold over a wide
range of values and plot the precision and recall for different
settings in a graph. In Fig. 8, we generated such a precision–recall
plot for all the compared algorithms. The precision–recall plot
can be seen as a bi-objective optimization problem where one
attempts to maximize both precision and recall. Each point in
the graph is obtained for a specific threshold value. We fit one
curve as a rough approximation to the points of the ten runs. It
can be seen that TCN-AE outperforms the other algorithms over
a wide range of anomaly thresholds. Especially along the identity
line (precision = recall), the difference of TCN-AE to the other
algorithms becomes apparent.

4.2.2. Performance for individual anomaly types
The ECG benchmark contains nine different anomaly types,

as summarized in Table 1. Since the anomaly types take very
different shapes, we were interested in knowing how well TCN-
AE can detect the individual types and how it compares to the
other anomaly detection algorithms. Table 6 shows how many
of the individual anomaly types were detected by the respective
algorithms for an EAC setting. Although TCN-AE has the most
detections for only four out of nine anomaly types, it is among
the top five algorithms in each case. Furthermore, it produces
significantly fewer FPs in the EAC setting (if we permitted TCN-
AE also to have more FPs, similar to the other algorithms, it
would detect even more anomalies). Interestingly, TCN-AE per-
forms slightly worse for the fusion beats ‘‘f’’ and ‘‘F’’ than DNN-AE.
Fusion beats usually differ from normal heartbeats not by their
timing but by their shape. Therefore, temporal dependencies play
only a minor role in the detection of fusion beats. It seems that
DNN-AE (which is similar to TCN-AE in some aspects but has a
significantly smaller temporal receptive field) can detect these
shape variations slightly better than TCN-AE.

Overall, we still see room for improvement. A more thorough
investigation of the anomaly types that appear to be hard for TCN-
AE could lead to new insights and possible new enhancements.

4.2.3. Computing anomaly score with little labeled data
While we used EAC to determine all anomaly thresholds for

the results presented in Table 5, we also investigated how the
results change when all algorithms may use only a small frac-
tion of each time series’ labels to find a suitable threshold. This
approach is more realistic for practical applications since, usually,
only little labeled data is available. In our specific experiment, the
algorithms were only allowed to use 10% of the anomaly labels.
The detailed results are listed in the appendix in Table A.1. We
observe that the F1-score for all algorithms deteriorates compared
to Table 5, where the EAC was used. Nevertheless, TCN-AE (F1 =
0.79) still has the highest performance (having the highest F1-
score on 18 out of 25 time series), followed by LSTM-AD (F1 =
0.67), LSTM-ED (F1 = 0.6), and DNN-AE (F1 = 0.57), while NuPIC
performs the worst (F1 = 0.22).

One interesting observation is that the recall of all algorithms
is significantly higher than the precision. A possible explanation
for this is that for many 10% intervals, on which the algorithms
optimize their threshold, a threshold value can be found that
results in a high recall and high precision. However, this threshold
is then too low for the remaining time series, and many FPs
are created as a consequence. This problem demonstrates that in
practice, more sophisticated methods are necessary to determine
a suitable threshold. We are planning to work on this issue in
future work.

Finally, we compare in Table 7 the runtimes of all algorithms
and the number of trainable parameters. All TCN-AE variants are
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able 5
ummary for the ECG data (mean ± σmean of 10 runs, except for the deterministic SORAD, LOF, and NuPIC algorithm). The results shown here are for the sum
f TP, FN and FP over all 25 time series and were obtained such that an approximate (difference of less than 1% in precision and recall) equal accuracy (EAC) is
chieved for each algorithm. The first six rows represent the non-DL algorithms.
Algorithm TP FN FP Prec Rec F1 p

OCC-SVM 431.0± 0.0 290.0± 0.0 318.0± 0.0 0.575± 0.000 0.598± 0.000 0.586± 0.000 2.531e−3
SORAD 519.0± 0.0 202.0± 0.0 206.0± 0.0 0.716± 0.000 0.72 ± 0.00 0.718± 0.000 2.531e−3
IF 529.8± 1.6 191.2± 1.6 194.5± 1.9 0.731± 0.003 0.735± 0.002 0.733± 0.002 2.531e−3
GMM 534.6± 3.7 186.4± 3.7 196.0± 3.7 0.732± 0.005 0.741± 0.005 0.737± 0.005 2.531e−3
BGMM 554.3± 2.0 166.7± 2.0 175.6± 2.2 0.759± 0.003 0.769± 0.003 0.764± 0.003 2.531e−3
LOF 566.0± 0.0 155.0± 0.0 161.0± 0.0 0.779± 0.000 0.785± 0.000 0.782± 0.000 2.531e−3

NuPIC 224.0± 0.0 497.0± 0.0 497.0± 0.0 0.311± 0.000 0.311± 0.000 0.311± 0.000 2.531e−3
LSTM-ED 557.3± 2.9 163.7± 2.9 168.9± 2.9 0.767± 0.004 0.773± 0.004 0.770± 0.004 2.531e−3
DNN-AE 583.7± 1.1 137.3± 1.1 142.9± 1.3 0.803± 0.002 0.810± 0.002 0.806± 0.002 2.531e−3
LSTM-AD 589.3± 0.8 131.7± 0.8 136.4± 0.5 0.812± 0.001 0.817± 0.001 0.815± 0.001 2.531e−3
TCN-AE (baseline) 597.5± 5.1 123.5± 5.1 129.0± 5.2 0.822± 0.007 0.829± 0.007 0.826± 0.007 2.531e−3
TCN-AE (final) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003 –
Fig. 8. Precision–recall curves for the individual DL algorithms on the ECG data. Shown are the fits through around 100 points which were generated by evaluating
precision & recall for different thresholds. For each algorithm, except NuPIC, 10 runs were performed.
Table 6
Number of detected anomalies for the individual algorithms, broken down by
anomaly type (in total nine types, see Table 1). We count the true detections
when an EAC is used. The last two columns (FN & FP) are the false negatives
and false positives summed up over all anomaly types. The last row depicts
optimal results for each type. The DL approaches (last six rows) are separated
from the non-DL approaches with a line.
Algorithm a A e f F J V x | FN FP

OCC-SVM 9.0 74.0 5.0 4.0 16.0 3.0 305.0 5.0 10.0 290.0 318.0
SORAD 9.0 108.0 5.0 17.0 17.0 4.0 337.0 6.0 11.0 207.0 210.0
GMM 9.1 178.0 6.3 8.3 14.7 2.4 301.0 5.4 9.4 186.4 196.0
IF 9.8 173.5 7.9 1.4 15.6 3.0 302.5 5.0 11.1 191.2 194.5
BGMM 9.4 189.7 6.1 10.5 16.4 2.3 303.4 5.7 10.8 166.7 175.6
LOF 8.0 211.0 7.0 18.0 16.0 3.0 277.0 12.0 14.0 155.0 161.0

NuPIC 2.0 32.0 1.0 1.0 5.0 2.0 172.0 3.0 6.0 497.0 497.0
LSTM-ED 10.1 150.5 7.2 18.6 20.0 2.0 328.1 9.1 11.7 163.7 168.9
DNN-AE 9.9 212.4 7.4 21.5 21.8 1.0 290.9 8.9 9.9 137.3 142.9
LSTM-AD 6.4 213.4 4.2 5.8 18.4 2.0 316.9 12.4 9.8 131.7 136.4
TCN-AE
(baseline)

9.6 176.9 5.5 18.8 18.9 1.8 345.0 9.0 12.0 123.5 129.0

TCN-AE
(final)

10.4 213.7 6.3 20.2 19.5 2.4 369.8 16.5 11.4 50.8 55.8

Ideal 11 235 10 22 25 3 374 19 22 0 0

considerably faster than the remaining algorithms. TCN-AE final,
the fastest algorithm is 5× faster than the fastest non-TCN-AE
algorithm (DNN-AE). LSTM-AD, ranked 2nd according to the F1-
score, is by far the slowest algorithm and required more than four
days to complete ten runs. Furthermore, LSTM-AD has the most
13
trainable parameters. Also, NuPIC is relatively slow (around 750
s per time series) since no GPU acceleration is available.

4.3. Discussion

Only for the last ECG recording (#48), our final version of
TCN-AE performs significantly worse than most other algorithms.
Surprisingly, for this time series, the final TCN-AE is also worse
than most other variants without one of the enhancements, i.e., it
is the combination of all additional modules that leads to the
deterioration of the result for ECG signal #48. We found that
the final TCN-AE algorithm produced an additional false-positive
event, which reduces the overall precision for this time series.
Exemplarily, we illustrate the cause of this FP in Fig. 9: one can
see that a reconstructed R-peak appears slightly shifted, resulting
in a large reconstruction error. The reason for this problem could
be the quasi-periodic nature of the ECG signal, which is a major
challenge for many algorithms. We could observe similar events
of this kind in a few other time series as well. Without the
extra FP event in time series #48, TCN-AE would also achieve an
F1-score of F1 = 1.0.

For time series #33, the results are unusual: we observe that
all algorithms have F1 = 0. This is because the time series
contains only a single anomaly, which is rather hard to spot,
even for the human eye. If we discarded time series #33 from
the benchmark, the average F1-score would improve for all algo-
rithms; for example, we would observe an increase from F1 =
0.896 to F = 0.933 for TCN-AE. Nevertheless, some further
1
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Fig. 9. Similar to Fig. 5, but now showing an excerpt of ECG signal #48. For both signals, one can observe a slight shift to the right in the reconstruction of the 5th
R-peak, which results in an unusually large error and, ultimately, the TCN-AE algorithm falsely detects an anomaly (false positive) at this position. Taking the (ECG)
signal’s variability into account, in order to prevent situations like these, is addressed in our ongoing work.

Fig. A.10. Results when tuning the algorithmic variants of TCN-AE on different subsets of the ECG data (mean and standard deviation of 10 runs).

14
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Table 7
Computation times: average (per time series) and total (10 runs, all time series) for all algorithms evaluated in this paper. TCN-AE
final is faster than baseline since it effectively has less layers. On the left side, the times for the non-DL models are shown.
Algorithm Mean (s) Total (h) #Par/103 Algorithm Mean (s) Total (h) #Par/103

SORAD 12.5 ± 0.1 0.9 0.257 final 47.6 ± 0.4 3.3 123.8
OCC-SVM 26.2± 1.8 1.8 – baseline 97.0± 1.1 6.7 208.4
BGMM 127.1± 3.7 8.8 – DNN-AE 237.5± 10.3 16.5 242.1
GMM 150.4± 9.4 10.4 – LSTM-ED 626.5± 30.8 43.5 62.5
IF 161.8± 9.7 11.2 – NuPIC 752.0± 23.4 52.4 –
LOF 173.7± 43.1 12.1 – LSTM-AD 1615.0± 127.6 112.2 465.6
Table 8
F1-scores (mean ± σmean) of TCN-AE and the other DL algorithms on all 25 time series of the ECG benchmark (highest values in boldface). The p-values are
computed with the one-sided Wilcoxon signed-rank test, in which we compare the final TCN-AE algorithm with the other variants. We compare the F1-scores of ten
uns, which are obtained for an EAC. The Wilcoxon test has the null hypothesis that the median F1-score of TCN-AE (final) is smaller than the compared algorithm
gainst the alternative that the median F1-score is larger. In all cases in which we fail to reject the null hypothesis at a confidence level of 5%, we highlight the
orresponding field. The results for the non-DL algorithms are shown in Table A.2.

NuPIC LSTM-ED DNN-AE LSTM-AD TCN-AE

F1 p F1 p F1 p F1 p F1

1 0.03 ± 0.00 0.002 0.572± 0.022 0.002 0.907± 0.008 0.118 0.904± 0.007 0.06 0.919 ± 0.006
2 0.5 ± 0.0 0.029 0.350± 0.017 0.003 0.267± 0.045 0.003 0.783 ± 0.026 0.5 0.733± 0.083
3 0.196± 0.000 0.002 0.831± 0.010 0.002 0.981 ± 0.006 0.997 0.376± 0.009 0.002 0.933± 0.008
4 0.0 ± 0.0 0.001 0.5 ± 0.0 0.001 0.0 ± 0.0 0.001 0.250± 0.083 0.002 1.0 ± 0.0
8 0.088± 0.000 0.002 0.923± 0.012 0.003 0.724± 0.010 0.002 0.913± 0.007 0.002 0.981 ± 0.003
9 0.218± 0.000 0.002 0.498± 0.014 0.002 0.708 ± 0.005 0.983 0.582± 0.005 0.002 0.674± 0.011
10 0.725± 0.000 0.001 0.811± 0.016 0.002 0.975± 0.005 0.096 0.907± 0.016 0.002 0.987 ± 0.000
11 0.0 ± 0.0 0.001 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
12 0.0 ± 0.0 0.001 0.5 ± 0.0 0.001 0.650± 0.077 0.004 1.0 ± 0.0 – 1.0 ± 0.0
13 0.0 ± 0.0 0.001 0.950± 0.026 0.042 1.0 ± 0.0 – 0.833± 0.000 0.001 1.0 ± 0.0
14 0.524± 0.000 0.002 0.925± 0.004 0.004 0.693± 0.005 0.002 0.918± 0.002 0.002 0.945 ± 0.004
15 0.0 ± 0.0 0.001 0.909 ± 0.000 – 0.909 ± 0.000 – 0.727± 0.000 0.001 0.909 ± 0.000
16 0.33 ± 0.00 0.001 0.877± 0.013 0.003 0.675± 0.010 0.003 0.945± 0.003 0.03 0.953 ± 0.001
17 0.0 ± 0.0 0.001 0.9 ± 0.1 0.159 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
18 0.24 ± 0.00 0.002 0.519± 0.010 0.003 0.843± 0.003 0.003 0.902± 0.005 0.003 0.962 ± 0.003
20 0.0 ± 0.0 0.001 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
21 0.0 ± 0.0 0.001 0.9 ± 0.1 0.159 0.1 ± 0.1 0.001 0.500± 0.167 0.013 1.0 ± 0.0
22 0.0 ± 0.0 0.001 0.900± 0.071 0.09 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
23 0.19 ± 0.00 0.001 0.814± 0.025 0.004 0.910± 0.009 0.003 0.919± 0.010 0.01 0.952 ± 0.000
26 0.169± 0.000 0.002 0.724± 0.008 0.002 0.646± 0.005 0.002 0.240± 0.005 0.003 0.806 ± 0.011
28 0.507± 0.000 0.001 0.893± 0.009 0.049 0.874± 0.006 0.003 0.882± 0.010 0.007 0.912 ± 0.004
33 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0
39 0.25 ± 0.00 0.002 0.778± 0.018 0.002 0.899± 0.006 0.002 0.793± 0.012 0.003 0.952 ± 0.003
42 0.514± 0.000 0.002 0.845± 0.007 0.003 0.898± 0.003 0.045 0.798± 0.005 0.003 0.909 ± 0.006
48 0.0 ± 0.0 0.002 1.0 ± 0.0 0.987 1.0 ± 0.0 0.987 1.0 ± 0.0 0.987 0.875± 0.042

Σ 0.311± 0.000 0.003 0.770± 0.004 0.003 0.806± 0.002 0.003 0.815± 0.001 0.003 0.926 ± 0.003
Mean 0.179± 0.000 0.003 0.757± 0.008 0.003 0.746± 0.005 0.003 0.767± 0.006 0.003 0.896 ± 0.006
Median 0.129± 0.000 0.002 0.837± 0.009 0.003 0.883± 0.003 0.003 0.882± 0.006 0.003 0.953 ± 0.002
Fig. A.11. Results when tuning various algorithms on different subsets of the ECG data (mean and standard deviation of 10 runs).
15
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able A.1
1-scores (mean ± σmean) of TCN-AE and the other algorithms. Same as Table 8, except that we permit the algorithms to determine an anomaly threshold from
nly 10% of the anomaly labels, as described in Section 3.4.

NuPIC LSTM-ED DNN-AE LSTM-AD TCN-AE

F1 p F1 p F1 p F1 p F1

1 0.077± 0.012 1.94e−18 0.475± 0.012 2.07e−18 0.809± 0.016 0.00108 0.801± 0.017 0.000857 0.831 ± 0.014
2 0.164± 0.038 8.63e−15 0.254± 0.014 2.37e−10 0.276± 0.012 4.85e−10 0.561 ± 0.014 1.0 0.467± 0.024
3 0.082± 0.016 1.95e−18 0.77 ± 0.01 4.6e−09 0.729± 0.017 9.57e−08 0.345± 0.014 1.95e−18 0.845 ± 0.011
4 0.106± 0.035 6.3e−06 0.112± 0.018 1.94e−18 0.144± 0.018 1.29e−17 0.420 ± 0.015 1.0 0.278± 0.031
8 0.294± 0.041 1.95e−18 0.861± 0.009 8.61e−06 0.538± 0.013 7.07e−18 0.789± 0.009 1.22e−11 0.903 ± 0.010
9 0.108± 0.027 2.01e−18 0.471± 0.009 6.23e−13 0.544± 0.013 0.0103 0.397± 0.021 6.39e−11 0.573 ± 0.011
10 0.509± 0.064 3.79e−15 0.691± 0.012 5.3e−06 0.644± 0.024 9.3e−13 0.796 ± 0.011 0.955 0.785± 0.014
11 0.043± 0.018 1.17e−18 0.515± 0.034 0.0807 0.285± 0.028 7.4e−15 0.640 ± 0.039 0.967 0.556± 0.023
12 0.09 ± 0.06 1.8e−18 0.351± 0.019 1.27e−15 0.343± 0.027 1.25e−14 0.578± 0.028 0.381 0.593 ± 0.022
13 0.010± 0.007 1.33e−18 0.718± 0.022 4.99e−08 0.588± 0.028 2.25e−15 0.624± 0.029 9.26e−14 0.817 ± 0.022
14 0.372± 0.080 2e−18 0.793± 0.015 4.31e−08 0.614± 0.011 9.52e−18 0.684± 0.019 1.42e−15 0.869 ± 0.010
15 0.006± 0.003 1.78e−18 0.574± 0.018 4.46e−10 0.702± 0.023 0.791 0.781 ± 0.008 1.0 0.692± 0.015
16 0.264± 0.019 1.93e−18 0.816± 0.010 1.1e−06 0.612± 0.008 3.78e−17 0.873± 0.010 0.00805 0.883 ± 0.013
17 0.001± 0.001 1.97e−19 0.097± 0.029 4.66e−16 0.10 ± 0.03 9.66e−16 0.10 ± 0.03 9.66e−16 0.791 ± 0.029
18 0.251± 0.004 1.95e−18 0.482± 0.007 1.95e−18 0.660± 0.017 3.06e−18 0.837± 0.006 4.07e−14 0.917 ± 0.005
20 0.007± 0.007 3.74e−18 0.368± 0.032 0.000163 0.288± 0.032 1.1e−07 0.329± 0.036 0.00217 0.436 ± 0.032
21 0.004± 0.004 1.47e−18 0.361± 0.033 2.1e−11 0.230± 0.021 2.88e−12 0.391± 0.021 0.000737 0.558 ± 0.038
22 0.337± 0.067 1.75e−17 0.500± 0.024 1.1e−07 0.538± 0.026 1.81e−05 0.621± 0.022 0.212 0.629 ± 0.018
23 0.281± 0.032 1.94e−18 0.504± 0.022 2.74e−17 0.769± 0.017 0.000898 0.740± 0.016 2.52e−05 0.830 ± 0.012
26 0.135± 0.023 1.95e−18 0.561± 0.024 7.71e−11 0.460± 0.019 5.74e−18 0.381± 0.013 5.01e−14 0.665 ± 0.015
28 0.426± 0.038 1.94e−18 0.704± 0.019 2.45e−06 0.723± 0.020 0.00418 0.775± 0.012 0.00466 0.801 ± 0.010
33 0.0 ± 0.0 1.34e−05 0.092 ± 0.014 1.0 0.062± 0.007 0.999 0.002± 0.001 1.34e−05 0.033± 0.007
39 0.150± 0.019 1.95e−18 0.719± 0.010 1.77e−17 0.781± 0.019 2.93e−06 0.823± 0.011 6.18e−08 0.898 ± 0.007
42 0.468± 0.021 1.95e−18 0.738± 0.014 3.59e−13 0.736± 0.023 6.34e−07 0.714± 0.012 6.9e−16 0.844 ± 0.008
48 0.008± 0.004 1.8e−18 0.544± 0.024 1.39e−08 0.498± 0.032 2.97e−05 0.703 ± 0.024 0.925 0.667± 0.022

Σ 0.217± 0.012 1.95e−18 0.597± 0.005 1.95e−18 0.568± 0.004 1.95e−18 0.671± 0.004 9.52e−18 0.786 ± 0.004
Mean 0.168± 0.009 1.95e−18 0.523± 0.004 1.95e−18 0.507± 0.004 1.95e−18 0.588± 0.003 3.78e−18 0.686 ± 0.005
Median 0.120± 0.015 1.95e−18 0.544± 0.006 1.95e−18 0.531± 0.008 1.95e−18 0.650± 0.007 1.22e−17 0.747 ± 0.007
Fig. A.12. Histogram of the reconstruction error (in blue) for one dimension of the error matrix E′ . We found that the reconstruction errors are bell-shaped (elliptic
in higher dimensions). Although the reconstruction errors are not Gaussian, they closely follow a t-distribution with a mean µ̂, a standard deviation σ̂ , and ν degrees
of freedom, as indicated by the estimated distribution (red line).
investigation is required to understand why all algorithms have
difficulties with time series #33.

Also, there are a few other time series (#11, #17, #20, #22,
#48) for which the majority of algorithms obtained a perfect F1-
score of F1 = 1.0. These time series (except #48, which has four
anomalies) only contain a single anomaly.

Although there are differences to supervised heartbeat clas-
sification algorithms, we found that our results are also roughly
comparable to a few works in the literature: In [83], a F1-score
of F = 0.93 is obtained, if we consider only the anomaly classes
1

16
also used in this work. In [84], the F1-score on the test set for the
overlapping anomaly classes is F1 = 0.84, which is slightly lower
than the score reported by us (F1 = 0.93, Table 4).

A particular limitation of our algorithm is that it cannot be
used for time series that contain many anomalies. We have ex-
emplarily demonstrated this issue for an ECG time series (#30),
which contains many anomalous events (990 V-events, 370 F-
events, with only 1500 normal heartbeats). As expected, TCN-AE
breaks down in such a setting: The obtained F -score is F =
1 1
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Table A.2
Similar to Table 8. F1-scores (mean± σmean) of TCN-AE and the other non-DL algorithms on all 25 time series of the ECG benchmark (highest values in boldface).
Patient No OCC-SVM SORAD IF GMM BGMM LOF TCN-AE

F1 p F1 p F1 p F1 p F1 p F1 p F1

1 0.058± 0.000 0.00224 0.348± 0.000 0.00224 0.480± 0.013 0.0025 0.902± 0.008 0.0328 0.875± 0.012 0.00609 0.882± 0.000 0.00224 0.919 ± 0.006
2 0.333± 0.000 0.00248 0.333± 0.000 0.00248 0.267± 0.045 0.0025 0.217± 0.061 0.00348 0.350± 0.046 0.00303 0.5 ± 0.0 0.0294 0.733 ± 0.083
3 0.314± 0.000 0.0022 0.769± 0.000 0.0022 0.154± 0.015 0.00246 0.475± 0.016 0.00252 0.564± 0.016 0.00246 0.846± 0.000 0.0022 0.933 ± 0.008
4 0.0 ± 0.0 0.000783 0.5 ± 0.0 0.000783 0.300± 0.082 0.00193 0.5 ± 0.0 0.000783 0.5 ± 0.0 0.000783 0.0 ± 0.0 0.000783 1.0 ± 0.0
8 0.574± 0.000 0.00193 0.765± 0.000 0.00193 0.70 ± 0.06 0.00225 0.902± 0.005 0.00245 0.885± 0.004 0.00201 0.922± 0.000 0.00193 0.981 ± 0.003
9 0.436± 0.000 0.00245 0.393± 0.000 0.00245 0.389± 0.006 0.00247 0.312± 0.006 0.0025 0.359± 0.013 0.0025 0.75 ± 0.00 0.998 0.674± 0.011
10 0.658± 0.000 0.000783 0.9 ± 0.0 0.000783 0.750± 0.017 0.0022 0.710± 0.026 0.0024 0.827± 0.011 0.00245 0.9 ± 0.0 0.000783 0.987 ± 0.000
11 1.0 ± 0.0 – 1.0 ± 0.0 – 0.9 ± 0.1 0.159 0.9 ± 0.1 0.159 0.200± 0.133 0.00234 1.0 ± 0.0 – 1.0 ± 0.0
12 0.4 ± 0.0 0.000783 0.5 ± 0.0 0.000783 0.05 ± 0.05 0.00114 1.0 ± 0.0 – 0.500± 0.105 0.00415 1.0 ± 0.0 – 1.0 ± 0.0
13 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 0.5 ± 0.0 0.000783 1.0 ± 0.0
14 0.88 ± 0.00 0.00232 0.92 ± 0.00 0.00232 0.878± 0.003 0.00246 0.824± 0.012 0.00253 0.831± 0.010 0.00252 0.931± 0.000 0.00516 0.945 ± 0.004
15 0.909 ± 0.000 – 0.909 ± 0.000 – 0.909 ± 0.000 – 0.909 ± 0.000 – 0.909 ± 0.000 – 0.769± 0.000 0.000783 0.909 ± 0.000
16 0.886± 0.000 0.00114 0.933± 0.000 0.00114 0.990 ± 0.001 0.999 0.832± 0.011 0.00252 0.833± 0.012 0.0025 0.402± 0.000 0.00114 0.953± 0.001
17 1.0 ± 0.0 – 0.0 ± 0.0 0.000783 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
18 0.433± 0.000 0.00234 0.507± 0.000 0.00234 0.760± 0.009 0.00252 0.571± 0.027 0.00253 0.686± 0.011 0.00253 0.872± 0.000 0.00234 0.962 ± 0.003
20 0.0 ± 0.0 0.000783 1.0 ± 0.0 – 0.0 ± 0.0 0.000783 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
21 0.0 ± 0.0 0.000783 1.0 ± 0.0 – 0.500± 0.167 0.0127 0.400± 0.163 0.00715 0.700± 0.153 0.0416 1.0 ± 0.0 – 1.0 ± 0.0
22 0.667± 0.000 0.000783 0.0 ± 0.0 0.000783 0.633± 0.145 0.0192 1.0 ± 0.0 – 1.0 ± 0.0 – 0.667± 0.000 0.000783 1.0 ± 0.0
23 0.829± 0.000 0.000783 0.762± 0.000 0.000783 0.834± 0.009 0.00225 0.762± 0.014 0.00224 0.814± 0.015 0.00232 0.905± 0.000 0.000783 0.952 ± 0.000
26 0.554± 0.000 0.00225 0.634± 0.000 0.00225 0.258± 0.015 0.00252 0.612± 0.023 0.00252 0.631± 0.008 0.00247 0.593± 0.000 0.00225 0.806 ± 0.011
28 0.912 ± 0.000 0.5 0.765± 0.000 0.00149 0.884± 0.002 0.00285 0.598± 0.006 0.00243 0.607± 0.019 0.00246 0.794± 0.000 0.00149 0.912 ± 0.004
33 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0
39 0.198± 0.000 0.00193 0.76 ± 0.00 0.00193 0.80 ± 0.08 0.00249 0.911± 0.006 0.00242 0.910± 0.006 0.00249 0.909± 0.000 0.00193 0.952 ± 0.003
42 0.72 ± 0.00 0.0024 0.72 ± 0.00 0.0024 0.830± 0.003 0.00245 0.801± 0.010 0.0025 0.790± 0.013 0.00252 0.857± 0.000 0.0024 0.909 ± 0.006
48 1.0 ± 0.0 0.987 1.0 ± 0.0 0.987 1.0 ± 0.0 0.987 1.0 ± 0.0 0.987 1.0 ± 0.0 0.987 1.0 ± 0.0 0.987 0.875± 0.042

Σ 0.586± 0.000 0.00253 0.718± 0.000 0.00253 0.733± 0.002 0.00253 0.737± 0.005 0.00253 0.764± 0.003 0.00253 0.782± 0.000 0.00253 0.926 ± 0.003
Mean 0.55 ± 0.00 0.00253 0.657± 0.000 0.00253 0.611± 0.007 0.00253 0.725± 0.009 0.00253 0.711± 0.008 0.00253 0.76 ± 0.00 0.00253 0.896 ± 0.006
Median 0.564± 0.000 0.00246 0.761± 0.000 0.00246 0.752± 0.008 0.00253 0.82 ± 0.01 0.00253 0.804± 0.006 0.00253 0.865± 0.000 0.00246 0.953 ± 0.002
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Table A.3
F1-scores (mean ± σmean) of the individual TCN-AE variants on all 25 time series of the ECG benchmark. The p-values are computed with the one-sided Wilcoxon signed-rank test, in which we compare the final
TCN-AE algorithm with the other variants. We compare the F1-scores of ten runs, which are obtained for an EAC. The Wilcoxon test has the null hypothesis that the median F1-score of TCN-AE (final) is smaller than
the compared algorithm against the alternative that the median F1-score is larger. In all cases in which we fail to reject the null hypothesis at a confidence level of 5%, we highlight the corresponding field.
Patient No Baseline noSkip noLatent noInvDil noRecon noMapReduc noAnomScoreCorr Final

F1 p F1 p F1 p F1 p F1 p F1 p F1 p F1

1 0.768± 0.079 0.069 0.844± 0.039 0.018 0.940± 0.001 0.995 0.913± 0.005 0.051 0.846± 0.014 0.002 0.937± 0.002 0.978 0.941 ± 0.000 0.995 0.919± 0.006
2 0.617± 0.043 0.043 0.667± 0.000 0.042 0.667± 0.078 0.168 0.600± 0.067 0.035 0.662± 0.005 0.046 0.600± 0.067 0.035 0.800 ± 0.022 0.841 0.733± 0.083
3 0.877± 0.008 0.003 0.883± 0.009 0.002 0.831± 0.014 0.002 0.862± 0.006 0.002 0.882± 0.013 0.002 0.909± 0.011 0.041 0.846± 0.006 0.002 0.933 ± 0.008
4 0.300± 0.082 0.002 0.750± 0.083 0.013 0.5 ± 0.0 0.001 0.5 ± 0.0 0.001 0.55 ± 0.05 0.001 0.900± 0.067 0.079 1.0 ± 0.0 – 1.0 ± 0.0
8 0.811± 0.016 0.003 0.837± 0.015 0.002 0.811± 0.012 0.003 0.958± 0.004 0.003 0.970± 0.004 0.006 0.977± 0.002 0.111 0.839± 0.015 0.003 0.981 ± 0.003
9 0.613± 0.045 0.077 0.675 ± 0.009 0.556 0.643± 0.007 0.007 0.643± 0.011 0.025 0.602± 0.011 0.004 0.618± 0.012 0.007 0.673± 0.007 0.556 0.674± 0.011
10 0.948± 0.016 0.014 0.962± 0.007 0.008 0.980± 0.005 0.09 0.982± 0.003 0.079 0.979± 0.004 0.029 0.987 ± 0.000 – 0.975± 0.004 0.023 0.987 ± 0.000
11 0.9 ± 0.1 0.159 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
12 0.750± 0.083 0.013 0.600± 0.067 0.002 0.95 ± 0.05 0.159 0.650± 0.077 0.004 0.600± 0.067 0.002 0.750± 0.112 0.029 1.0 ± 0.0 – 1.0 ± 0.0
13 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
14 0.903± 0.009 0.009 0.938± 0.005 0.088 0.938± 0.001 0.039 0.938± 0.006 0.124 0.922± 0.003 0.003 0.939± 0.005 0.2 0.924± 0.005 0.005 0.945 ± 0.004
15 0.894± 0.010 0.079 0.909 ± 0.000 – 0.894± 0.010 0.079 0.909 ± 0.000 – 0.841± 0.008 0.001 0.894± 0.010 0.079 0.909 ± 0.000 – 0.909 ± 0.000
16 0.905± 0.009 0.002 0.932± 0.002 0.002 0.956± 0.005 0.764 0.949± 0.002 0.029 0.962± 0.001 0.994 0.950± 0.001 0.051 0.982 ± 0.002 0.998 0.953± 0.001
17 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
18 0.777± 0.031 0.003 0.809± 0.011 0.003 0.865± 0.017 0.002 0.942± 0.004 0.002 0.946± 0.003 0.002 0.943± 0.005 0.006 0.899± 0.003 0.003 0.962 ± 0.003
20 0.800± 0.133 0.079 1.0 ± 0.0 – 0.967± 0.033 0.159 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
21 0.9 ± 0.1 0.159 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
22 0.867± 0.054 0.023 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0 – 1.0 ± 0.0
23 0.857± 0.014 0.002 0.931± 0.008 0.017 0.938± 0.006 0.032 0.952 ± 0.000 – 0.952 ± 0.000 – 0.952 ± 0.000 – 0.946± 0.007 0.159 0.952 ± 0.000
26 0.638± 0.011 0.002 0.671± 0.012 0.002 0.646± 0.015 0.002 0.694± 0.006 0.002 0.817 ± 0.013 0.764 0.768± 0.015 0.061 0.635± 0.016 0.003 0.806± 0.011
28 0.874± 0.008 0.008 0.912± 0.004 – 0.874± 0.006 0.005 0.905± 0.004 0.179 0.926 ± 0.005 0.987 0.906± 0.006 0.207 0.924± 0.005 0.977 0.912± 0.004
33 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0
39 0.859± 0.012 0.003 0.897± 0.010 0.002 0.945± 0.003 0.029 0.952± 0.003 0.5 0.950± 0.003 0.159 0.955 ± 0.002 0.921 0.95 ± 0.01 0.405 0.952± 0.003
42 0.825± 0.009 0.002 0.853± 0.006 0.002 0.831± 0.009 0.002 0.882± 0.002 0.002 0.868± 0.005 0.002 0.885± 0.003 0.004 0.849± 0.011 0.003 0.909 ± 0.006
48 0.950± 0.033 0.958 1.0 ± 0.0 0.987 0.889± 0.039 0.841 1.0 ± 0.0 0.987 1.0 ± 0.0 0.987 0.975± 0.025 0.949 0.875± 0.042 – 0.875± 0.042

Σ 0.826± 0.007 0.003 0.861± 0.008 0.003 0.871± 0.007 0.003 0.904± 0.003 0.003 0.907± 0.004 0.003 0.913± 0.002 0.008 0.890± 0.005 0.003 0.926 ± 0.003
Mean 0.785± 0.009 0.003 0.843± 0.009 0.003 0.843± 0.007 0.003 0.849± 0.005 0.003 0.851± 0.006 0.003 0.874± 0.008 0.07 0.879± 0.004 0.003 0.896 ± 0.006
Median 0.868± 0.006 0.003 0.911± 0.007 0.003 0.919± 0.007 0.003 0.939± 0.004 0.003 0.939± 0.003 0.003 0.950± 0.002 0.069 0.934± 0.005 0.003 0.953 ± 0.002
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able B.4
ensitivity of TCN-AE (final) towards the max. dilation rate qmax . The results shown here are for the sum of TP, FN and FP over all 25 time series and were obtained

such that an approximate (difference of less than 1% in precision and recall) equal accuracy (EAC) is achieved for each algorithm and time series. The default value
is used in the main part of the paper. For qmax = 1024, only a single run was performed, due to server issues.
qmax TP FN FP Prec Rec F1

2 493.7± 4.0 227.3± 4.0 226.9± 3.7 0.685± 0.005 0.685± 0.006 0.685± 0.005
4 644.5± 1.6 76.5± 1.6 82.5± 1.6 0.887± 0.002 0.894± 0.002 0.890± 0.002
8 647.3± 1.5 73.7± 1.5 78.8± 1.5 0.891± 0.002 0.898± 0.002 0.895± 0.002
16 651.1± 1.1 69.9± 1.1 74.8± 1.2 0.897± 0.002 0.903± 0.002 0.90 ± 0.02
32 656.7± 1.7 64.3± 1.7 68.1± 1.6 0.906± 0.002 0.911± 0.002 0.908± 0.002
64 (default) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003
128 673.8± 0.7 47.2± 0.7 52.4± 0.6 0.928± 0.001 0.935± 0.001 0.931± 0.001
256 668.8± 1.0 52.2± 1.0 56.4± 1.0 0.922± 0.001 0.928± 0.001 0.925± 0.001
512 666.5± 1.0 54.5± 1.0 59.4± 1.0 0.918± 0.001 0.924± 0.002 0.921± 0.001
1024 652.0± 0.0 69.0± 0.0 74.0± 0.0 0.898± 0.000 0.904± 0.000 0.901± 0.000
Table B.5
Similar to Table B.4. Sensitivity of TCN-AE (final) towards the number of filters nfilters used in the dilated convolutional layers.
nfilters TP FN FP Prec Rec F1

2 507.8± 10.5 213.2± 10.5 202.7± 6.1 0.714± 0.009 0.704± 0.015 0.709± 0.012
4 527.3± 9.5 193.7± 9.5 187.7± 4.5 0.737± 0.008 0.731± 0.013 0.734± 0.011
8 655.4± 1.8 65.6± 1.8 70.3± 1.7 0.903± 0.003 0.909± 0.003 0.906± 0.003
16 661.6± 1.2 59.4± 1.2 65.5± 1.2 0.910± 0.002 0.918± 0.002 0.914± 0.002
32 663.3± 1.5 57.7± 1.5 63.0± 1.5 0.913± 0.002 0.920± 0.002 0.917± 0.002
64 (default) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003
128 659.8± 1.4 61.2± 1.4 66.4± 2.1 0.909± 0.003 0.915± 0.002 0.912± 0.003
256 653.6± 2.8 67.4± 2.8 68.9± 2.1 0.905± 0.003 0.907± 0.004 0.906± 0.002
Table B.6
Similar to Table B.4. Sensitivity of TCN-AE (final) towards the kernel size k used in the dilated convolutional layers.
k TP FN FP Prec Rec F1

2 640.2± 1.8 80.8± 1.8 85.8± 1.7 0.882± 0.003 0.888± 0.003 0.885± 0.003
4 651.8± 1.6 69.2± 1.6 73.8± 1.3 0.898± 0.002 0.904± 0.002 0.901± 0.002
8 (default) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003
16 665.6± 1.2 55.4± 1.2 60.8± 1.2 0.916± 0.002 0.923± 0.002 0.920± 0.002
32 635.7± 1.6 85.3± 1.6 93.4± 1.5 0.872± 0.002 0.882± 0.002 0.877± 0.002
Table B.7
Similar to Table B.4. Sensitivity of TCN-AE (final) towards the sample rate s used in the bottle neck of the architecture.
s TP FN FP Prec Rec F1

1 617.5± 1.9 103.5± 1.9 107.0± 1.8 0.852± 0.003 0.856± 0.003 0.854± 0.003
2 618.9± 2.0 102.1± 2.0 105.4± 1.9 0.854± 0.003 0.858± 0.003 0.856± 0.003
4 622.6± 1.7 98.4± 1.7 101.3± 1.5 0.860± 0.002 0.864± 0.002 0.862± 0.002
8 631.0± 1.7 90.0± 1.7 92.7± 1.6 0.872± 0.002 0.875± 0.002 0.874± 0.002
16 649.2± 1.3 71.8± 1.3 75.9± 0.9 0.895± 0.001 0.90 ± 0.02 0.898± 0.002
32 (default) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003
64 646.1± 1.2 74.9± 1.2 79.4± 1.4 0.891± 0.002 0.896± 0.002 0.893± 0.002
128 640.9± 1.5 80.1± 1.5 85.1± 1.4 0.883± 0.002 0.889± 0.002 0.886± 0.002
256 483.8± 9.7 237.2± 9.7 230.7± 6.0 0.677± 0.008 0.671± 0.014 0.674± 0.010
Table B.8
Similar to Table B.4. Sensitivity of TCN-AE (final) towards the dimension of the encoded feature map used in the bottle neck of the encoder (last conv. layer in
Fig. 3).
dimencoded TP FN FP Prec Rec F1

1 632.0± 5.7 89.0± 5.7 93.8± 5.7 0.871± 0.008 0.877± 0.008 0.874± 0.008
2 652.9± 4.8 68.1± 4.8 73.4± 4.8 0.899± 0.007 0.906± 0.007 0.902± 0.007
4 (default) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003
8 662.8± 1.2 58.2± 1.2 63.4± 1.2 0.913± 0.002 0.919± 0.002 0.916± 0.002
16 661.9± 0.9 59.1± 0.9 64.2± 0.9 0.912± 0.001 0.918± 0.001 0.915± 0.001
32 657.9± 1.2 63.1± 1.2 67.5± 1.1 0.907± 0.002 0.912± 0.002 0.910± 0.002
0.175±0.018, with only TP = 148.7±17.4, FN = 1225.3±17.4,
nd FP = 175.6± 22.6.
Overall, we have shown that the TCN-AE architecture can

roduce competitive results on a challenging anomaly detection
enchmark. We found that the TCN-AE architecture has several
ppealing properties which can be advantageous in time series
nomaly detection, some of which we list in the following:
19
• Receptive field: Due to the hierarchical dilated convolutional
structure, the size of the receptive field of the network can
easily be scaled to the requirements of the problem.
• Skip Connections: Due to the introduced skip connections,

TCN-AE is less sensitive towards the choice of the dilation
rates (for example, we could choose dilation rates 1 . . . 64
or 1 . . . 256 and obtain similar results in both cases).
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able B.9
imilar to Table B.4. Sensitivity of TCN-AE (final) towards the number of channels used in the skip connections, as described in Section 2.6.1 (the connections ending
n the ‘‘concat’’-layers in Figs. 3 & 4). For # channels = None, no skip connections are employed.
# channels TP FN FP Prec Rec F1

None 622.4± 5.7 98.6± 5.7 102.9± 5.7 0.858± 0.008 0.863± 0.008 0.861± 0.008
1 645.6± 3.3 75.4± 3.3 80.2± 3.5 0.890± 0.005 0.895± 0.004 0.892± 0.005
2 661.0± 1.7 60.0± 1.7 64.4± 1.7 0.911± 0.002 0.917± 0.002 0.914± 0.002
4 662.6± 1.5 58.4± 1.5 63.3± 1.4 0.913± 0.002 0.919± 0.002 0.916± 0.002
8 669.8± 0.7 51.2± 0.7 56.1± 0.7 0.923± 0.001 0.929± 0.001 0.926± 0.001
16 (default) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003
32 668.5± 0.6 52.5± 0.6 57.5± 0.8 0.921± 0.001 0.927± 0.001 0.924± 0.001
64 664.9± 1.0 56.1± 1.0 61.5± 1.0 0.915± 0.001 0.922± 0.001 0.919± 0.001
Table B.10
Similar to Table B.4. Sensitivity of TCN-AE (final) towards the number of filters used in the feature map reduction layers, as described in Section 2.6.4. The last line
indicates the results when no feature map reduction layers are used at all.
# channels TP FN FP Prec Rec F1

2 658.3± 1.0 62.7± 1.0 67.2± 1.0 0.907± 0.001 0.913± 0.002 0.910± 0.001
4 659.9± 1.3 61.1± 1.3 66.0± 1.5 0.909± 0.002 0.915± 0.002 0.912± 0.002
8 665.5± 1.3 55.5± 1.3 60.8± 1.5 0.916± 0.002 0.923± 0.002 0.920± 0.002
16 (default) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003
32 670.1± 0.8 50.9± 0.8 55.8± 0.8 0.923± 0.001 0.929± 0.001 0.926± 0.001
None 660.7± 1.3 60.3± 1.3 65.1± 1.4 0.910± 0.002 0.916± 0.002 0.913± 0.002
Fig. A.13. Training and validation loss, exemplarily shown for the ECG time series #1, #12, #21 and #48. During the training process, around 10% of the data is
used for validation purposes.
• Utilization of hidden Representations: Outputs of interme-
diate dilated convolutional layers are utilized, which allows
using information processed at different time scales. This in-
formation is useful for obtaining an accurate reconstruction
of the input and scanning for anomalies at different time
scales.
• Fast Training: The parallelizable convolution operation al-

lows processing the time series very fast using GPUs (in this
study, less than 50 s per time series, as shown in Table 7).
• Number of Weights: TCN-AE appears to potentially require

less trainable weights than other architectures (e.g., recur-
rent neural networks) to obtain a good model accuracy.
However, this claim has to be verified in more thorough
studies in the future.
20
5. Conclusion and future work

In this paper, we introduced a novel temporal convolutional
autoencoder (TCN-AE) architecture, which is designed to learn
compressed representations of time series data in an unsuper-
vised fashion. It is, to the best of our knowledge, the first work
showing the combination of TCN and AE.

We demonstrated the new algorithm’s efficacy on a challeng-
ing real-world anomaly detection task, consisting of 30-minute
electrocardiogram (ECG) readings of 25 patients. The algorithm
could outperform several other unsupervised state-of-the-art al-
gorithms on the investigated problem. Starting with a baseline
model, we showed that several extensions are crucial to in-
crease the overall performance. Particularly, we found that skip
connections from the encoder’s dilated convolutional layers to
the bottleneck and skip connections from the decoder’s dilated
convolutional layers to the final reconstruction (output) layer
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mprove the overall learning significantly. Furthermore, the uti-
ization of hidden representations (the outputs of the individ-
al dilated convolutional layers) inside TCN-AE appears to be
f considerable importance. The results suggest that temporal
nomalies become more apparent on some time scales than on
thers. Another important finding was that TCN-AE was five times
aster in our experiments than the second-fastest DL algorithm
DNN-AE, see Table 7).

In summary, we demonstrated that it is possible to train a
eep learning model without supervision, which can be used
fter training to detect anomalies in multivariate time series data.
he novel TCN-AE model proposed in this work appears to be
articularly well suited to learn long-range temporal patterns in
omplex quasiperiodic time series.
In our future research, we are planning to address several as-

ects of TCN-AE, which have not been thoroughly understood or
nvestigated yet: (a) Application of the architecture to other chal-
enging real-world anomaly detection problems. (b) Researching
he capabilities of TCN-AE in the field of time series compression.
c) Approaches for the determination of suitable anomaly thresh-
lds with severely limited labeled data. (d) Analyzing time series
ith a higher ratio anomalous/normal data: In this work, we
nalyzed time series with not more than 250 anomalous events
er patient. It is possible that TCN-AE also works for data with
ore anomalies. We plan to investigate our algorithm for settings
ith significantly larger anomaly ratios.
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Appendix A. Extended results

See Figs. A.10–A.13 and Tables A.1–A.3.

Appendix B. Basic sensitivity analysis

See Tables B.4–B.10.
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