import pandas as pd import matplotlib.pyplot as plt import datetime import numpy as np #normal_datafiles_list=['2025-01-08_5_','2025-01-09_5_','2025-01-10_5_','2025-01-11_5_'] normal_datafiles_list=['2025-01-09_5_','2025-01-10_5_','2025-01-11_5_'] anormal_datafiles_list=['2025-01-04_5_','2025-01-05_5_','2025-01-06_5_','2025-01-07_5_'] cols=['r1 s1','r1 s4','r1 s5','pa1 apiii'] df_list=[] for f in normal_datafiles_list: #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime') df1 = pd.read_csv('./data/'+f+'.csv') df_list.append(df1) df=pd.concat(df_list) datalength=df.shape[0] # subsampled to 5' = 30 * 10" normaldataframe=df.iloc[range(0,datalength,30)][cols] normaldataframe.reset_index(inplace=True,drop=True) normaldata=normaldataframe.values df_list=[] for f in anormal_datafiles_list: #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime') df1 = pd.read_csv('./data/'+f+'.csv') df_list.append(df1) df=pd.concat(df_list) datalength=df.shape[0] # subsampled to 5' = 30 * 10" anormaldataframe=df.iloc[range(0,datalength,30)][cols] anormaldataframe.reset_index(inplace=True,drop=True) anormaldata=anormaldataframe.values nplots=len(cols) plt.rcParams.update({'font.size': 10}) f,ax = plt.subplots(int(np.ceil(nplots/2)),2,figsize=(24,17), dpi=80, facecolor='white', edgecolor='k') for i in range(int(np.ceil(nplots/2))): for j in range(2): r=i*2+j if r