# Csar Fdez, UdL, 2025 import pandas as pd import matplotlib.pyplot as plt import datetime import numpy as np import keras import os.path import pickle from keras import layers from optparse import OptionParser parser = OptionParser() parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true") (options, args) = parser.parse_args() # data files arrays. Index: # 0. No failure # 1. Blocked evaporator # 2. Full Blocked condenser # 3. Partial Blocked condenser # 4 Fan condenser not working # 5. Open door NumberOfFailures=5 NumberOfFailures=4 # So far, we have only data for the first 4 types of failures datafiles=[] for i in range(NumberOfFailures+1): datafiles.append([]) # Next set of ddata corresponds to Freezer, SP=-26 datafiles[0]=['2024-08-07_5_','2024-08-08_5_'] datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] datafiles[2]=['2024-12-18_5_','2024-12-19_5_'] datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_'] datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_'] #datafiles[4]=[] # Features suggested by Xavier # Care with 'tc s3' because on datafiles[0] is always nulll # Seems to be incoropored in new tests features=['r1 s1','r1 s4','r1 s5','pa1 apiii'] features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2'] #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8'] NumFeatures=len(features) df_list=[] for i in range(NumberOfFailures+1): df_list.append([]) for i in range(NumberOfFailures+1): dftemp=[] for f in datafiles[i]: print(" ", f) #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime') df1 = pd.read_csv('./data/'+f+'.csv') dftemp.append(df1) df_list[i]=pd.concat(dftemp) # subsampled to 5' = 30 * 10" # We consider smaples every 5' because in production, we will only have data at this frequency subsamplingrate=30 dataframe=[] for i in range(NumberOfFailures+1): dataframe.append([]) for i in range(NumberOfFailures+1): datalength=df_list[i].shape[0] dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features] dataframe[i].reset_index(inplace=True,drop=True) dataframe[i].dropna(inplace=True) # Train data is first 2/3 of data # Test data is: last 1/3 of data dataTrain=[] dataTest=[] for i in range(NumberOfFailures+1): dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:]) dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:]) def normalize2(train,test): # merges train and test means=[] stdevs=[] for i in range(NumFeatures): means.append(train[:,i].mean()) stdevs.append(train[:,i].std()) return( (train-means)/stdevs, (test-means)/stdevs ) dataTrainNorm=[] dataTestNorm=[] for i in range(NumberOfFailures+1): dataTrainNorm.append([]) dataTestNorm.append([]) for i in range(NumberOfFailures+1): (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i]) def plotData(): fig, axes = plt.subplots( nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True ) for i in range(NumberOfFailures+1): axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0") axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1") #axes[1].legend() #axes[0].set_ylabel(features[0]) #axes[1].set_ylabel(features[1]) #plt.show() #plotData() NumFilters=64 KernelSize=7 DropOut=0.2 ThresholdFactor=2 TIME_STEPS = 48 def create_sequences(values, time_steps=TIME_STEPS): output = [] for i in range(len(values) - time_steps + 1): output.append(values[i : (i + time_steps)]) return np.stack(output) x_train=[] for i in range(NumberOfFailures+1): x_train.append(create_sequences(dataTrainNorm[i])) model=[] modelckpt_callback =[] es_callback =[] path_checkpoint=[] for i in range(NumberOfFailures+1): model.append([]) model[i] = keras.Sequential( [ layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])), layers.Conv1D( filters=NumFilters, kernel_size=KernelSize, padding="same", strides=2, activation="relu", ), layers.Dropout(rate=DropOut), layers.Conv1D( filters=int(NumFilters/2), kernel_size=KernelSize, padding="same", strides=2, activation="relu", ), layers.Conv1DTranspose( filters=int(NumFilters/2), kernel_size=KernelSize, padding="same", strides=2, activation="relu", ), layers.Dropout(rate=DropOut), layers.Conv1DTranspose( filters=NumFilters, kernel_size=KernelSize, padding="same", strides=2, activation="relu", ), layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"), ] ) model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse") model[i].summary() path_checkpoint.append("model_v1_"+str(i)+"._checkpoint.weights.h5") es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)) modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,)) if options.train: history=[] for i in range(NumberOfFailures+1): history.append(model[i].fit( x_train[i], x_train[i], epochs=400, batch_size=128, validation_split=0.3, callbacks=[ es_callback[i], modelckpt_callback[i] ],)) fig, axes = plt.subplots( nrows=int(np.ceil((NumberOfFailures+1)/2)), ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True ) for i in range(int(np.ceil((NumberOfFailures+1)/2))): for j in range(2): r=2*i+j if r < NumberOfFailures+1: axes[i][j].plot(history[r].history["loss"], label="Training Loss") axes[i][j].plot(history[r].history["val_loss"], label="Val Loss") axes[i][j].legend() #plt.show() else: for i in range(NumberOfFailures+1): model[i].load_weights(path_checkpoint[i]) x_train_pred=[] train_mae_loss=[] threshold=[] for i in range(NumberOfFailures+1): x_train_pred.append(model[i].predict(x_train[i])) train_mae_loss.append(np.mean(np.abs(x_train_pred[i] - x_train[i]), axis=1)) threshold.append(np.max(train_mae_loss[i],axis=0)) print("Threshold : ",threshold) for i in range(NumberOfFailures+1): threshold[i]=threshold[i]*ThresholdFactor # Threshold is enlarged because, otherwise, for subsamples at 5' have many false positives # 1st scenario. Detect only anomaly. Later, we will classiffy it # Test data= testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4],dataTestNorm[0])) x_test = create_sequences(d) x_test_pred = model[0].predict(x_test) test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1) # Define ranges for plotting in different colors testRanges=[] r=dataTestNorm[0].shape[0] testRanges.append([0,r]) for i in range(1,NumberOfFailures+1): rnext=r+dataTestNorm[i].shape[0] testRanges.append([r,rnext] ) r=rnext testRanges.append([r, x_test.shape[0]+TIME_STEPS ]) def AtLeastOneTrue(x): for i in range(NumFeatures): if x[i]: return True return False anomalies = test_mae_loss > threshold[0] anomalous_data_indices = [] for i in range(anomalies.shape[0]): if AtLeastOneTrue(anomalies[i]): #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]: anomalous_data_indices.append(i) #print(anomalous_data_indices) # Let's plot some features colorline=['violet','lightcoral','cyan','lime','grey'] colordot=['darkviolet','red','blue','green','black'] featuresToPlot=['r1 s1','r1 s2','r1 s3','pa1 apiii'] #featuresToPlot=features indexesToPlot=[] for i in featuresToPlot: indexesToPlot.append(features.index(i)) def plotData2(): NumFeaturesToPlot=len(indexesToPlot) fig, axes = plt.subplots( nrows=NumFeaturesToPlot, ncols=1, figsize=(25, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True ) for i in range(NumFeaturesToPlot): init=0 end=len(x_train[0]) axes[i].plot(range(init,end),x_train[0][:,0,indexesToPlot[i]],label="normal train") init=end end+=testRanges[0][1] axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],label="normal test") init=end end+=(testRanges[1][1]-testRanges[1][0]) for j in range(1,NumberOfFailures+1): axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]],label="fail type "+str(j), color=colorline[j-1]) init=end end+=(testRanges[j+1][1]-testRanges[j+1][0]) # Shift TIME_STEPS because detection is performed at the end of time serie trail=np.hstack((x_test[:,0,indexesToPlot[i]], x_test[-1:,1:TIME_STEPS,indexesToPlot[i]].reshape(TIME_STEPS-1))) axes[i].plot(len(x_train[0])+np.array(anomalous_data_indices)+TIME_STEPS,trail[np.array(anomalous_data_indices)+TIME_STEPS],color='grey',marker='.',linewidth=0,label="abnormal detection" ) init=end-(testRanges[NumberOfFailures+1][1]-testRanges[NumberOfFailures+1][0]) end=init+(testRanges[0][1]-testRanges[0][0]) axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],color='orange') if i==0: axes[i].legend(bbox_to_anchor=(1, 0.5)) axes[i].set_ylabel(features[indexesToPlot[i]]) axes[i].grid() plt.show() def anomalyMetric(testList): # first of list is non failure data # FP, TP: false/true positive # TN, FN: true/false negative # Sensitivity: probab failure detection if data is fail: TP/(TP+FN) # Specificity: true negative ratio given data is OK: TN/(TN+FP) x_test = create_sequences(testList[0]) x_test_pred = model[0].predict(x_test) test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1) anomalies = test_mae_loss > threshold[0] count=0 for i in range(anomalies.shape[0]): if AtLeastOneTrue(anomalies[i]): count+=1 FP=count TN=anomalies.shape[0]-count count=0 TP=np.zeros((NumberOfFailures)) FN=np.zeros((NumberOfFailures)) for i in range(1,len(testList)): x_test = create_sequences(testList[i]) x_test_pred = model[0].predict(x_test) test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1) anomalies = test_mae_loss > threshold[0] count=0 for j in range(anomalies.shape[0]): if AtLeastOneTrue(anomalies[j]): count+=1 TP[i-1] = count FN[i-1] = anomalies.shape[0]-count Sensitivity=TP.sum()/(TP.sum()+FN.sum()) Specifity=TN/(TN+FP) print("Sensitivity: ",Sensitivity) print("Specifity: ",Specifity) print("FP: ",FP) return Sensitivity+Specifity anomalyMetric([dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]]) plotData2() # 2nd scenario. Go over anomalies and classify it by less error ''' #This code works, but too slow anomalous_data_type=[] for i in anomalous_data_indices: error=[] for m in range(1,NumberOfFailures+1): error.append(np.mean(np.mean(np.abs(model[m].predict(x_test[i:i+1,:,:])-x_test[i:i+1,:,:]),axis=1))) anomalous_data_type.append(np.argmin(error)+1) ''' anomalous_data_type=[] x_test_predict=[] for m in range(NumberOfFailures+1): x_test_predict.append(model[m].predict(x_test)) for i in anomalous_data_indices: error=[] for m in range(1,NumberOfFailures+1): error.append(np.mean(np.mean(np.abs(x_test_predict[m][i:i+1,:,:]-x_test[i:i+1,:,:]),axis=1))) anomalous_data_type.append(np.argmin(error)+1) anomalous_data_indices_by_failure=[] for i in range(NumberOfFailures+1): anomalous_data_indices_by_failure.append([]) for i in range(len(anomalous_data_indices)): #print(i," ",anomalous_data_type[i]) anomalous_data_indices_by_failure[anomalous_data_type[i]].append(anomalous_data_indices[i]) MaxIndex=0 for i in range(1,NumberOfFailures+1): MaxIndex=max(MaxIndex,max(anomalous_data_indices_by_failure[i])) # Enlarge x_test to plot failure points XTest=np.vstack((x_test[:,0,:],x_test[-1,1:TIME_STEPS,:])) def plotData3(): NumFeaturesToPlot=len(indexesToPlot) fig, axes = plt.subplots( nrows=NumFeaturesToPlot, ncols=1, figsize=(25, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True ) for i in range(NumFeaturesToPlot): init=0 end=len(x_train[0]) axes[i].plot(range(init,end),x_train[0][:,0,indexesToPlot[i]],label="normal train") init=end end+=testRanges[0][1] axes[i].plot(range(init,end),XTest[testRanges[0][0]:testRanges[0][1],indexesToPlot[i]],label="normal test") init=end end+=(testRanges[1][1]-testRanges[1][0]) for j in range(1,NumberOfFailures+1): axes[i].plot(range(init,end),XTest[testRanges[j][0]:testRanges[j][1],indexesToPlot[i]],label="fail type "+str(j), color=colorline[j-1]) init=end end+=(testRanges[j+1][1]-testRanges[j+1][0]) ## MODIFY here as in PRevious Plot axes[i].plot(len(x_train[0])+np.array(anomalous_data_indices_by_failure[j])+TIME_STEPS,XTest[np.array(anomalous_data_indices_by_failure[j])+TIME_STEPS,indexesToPlot[i]],color=colordot[j-1],marker='.',linewidth=0,label="abnormal detection type "+str(j)) init=end-(testRanges[NumberOfFailures+1][1]-testRanges[NumberOfFailures+1][0]) end=init+(testRanges[0][1]-testRanges[0][0]) axes[i].plot(range(init,end),XTest[testRanges[0][0]:testRanges[0][1],indexesToPlot[i]],color='orange') if i==0: axes[i].legend(bbox_to_anchor=(1, 0.5)) axes[i].set_ylabel(features[indexesToPlot[i]]) axes[i].grid() plt.show() anomalyMetric([dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]]) plotData3() # A new anomalyMEtric for multiclass must be defined # look at anomalies detected on first stage # l0ok at classification of second stage # then: determine if: correct classified or bad classified/unclassified