123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- # Csar Fdez, UdL, 2025
- # Unsupervised classification. Uses tslearn
- # https://tslearn.readthedocs.io/en/stable/index.html
-
- # Be careful with v0_unsupervised and all versions for supervised.
- # because dataTrain is not stacke before create_sequences, so,
- # the sets are not aligned in time
-
-
- import pandas as pd
- import matplotlib.pyplot as plt
- import datetime
- import numpy as np
- import os.path
- from optparse import OptionParser
- import copy
- import pickle
- from tslearn.clustering import TimeSeriesKMeans
- from tslearn.neighbors import KNeighborsTimeSeries
- from collections import Counter
-
- parser = OptionParser()
- parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
- parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
-
- (options, args) = parser.parse_args()
-
-
- # data files arrays. Index:
- # 0. No failure
- # 1. Blocked evaporator
- # 2. Full Blocked condenser
- # 3. Partial Blocked condenser
- # 4 Fan condenser not working
- # 5. Open door
-
-
- NumberOfFailures=4 # So far, we have only data for the first 4 types of failures
- datafiles=[]
- for i in range(NumberOfFailures+1):
- datafiles.append([])
-
- # Next set of ddata corresponds to Freezer, SP=-26
- datafiles[0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_','2025-01-27_5_','2025-01-28_5_']
- datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
- #datafiles[1]=['2024-12-17_5_','2024-12-16_5_','2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] # This have transitions
- datafiles[2]=['2024-12-18_5_','2024-12-19_5_']
- datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
- datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
- #datafiles[4]=['2024-12-27_5_','2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_'] # This have transitions
-
- #datafiles[4]=[]
-
- # Features suggested by Xavier
- # Care with 'tc s3' because on datafiles[0] is always nulll
- # Seems to be incoropored in new tests
-
- #r1s5 supply air flow temperature
- #r1s1 inlet evaporator temperature
- #r1s4 condenser outlet
-
- # VAriables r1s4 and pa1 apiii may not exists in cloud controlers
-
-
- features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
- features=['r1 s1','r1 s4','r1 s5']
- featureNames={}
- featureNames['r1 s1']='$T_{evap}$'
- featureNames['r1 s4']='$T_{cond}$'
- featureNames['r1 s5']='$T_{air}$'
- featureNames['pa1 apiii']='$P_{elec}$'
-
- unitNames={}
- unitNames['r1 s1']='$(^{o}C)$'
- unitNames['r1 s4']='$(^{o}C)$'
- unitNames['r1 s5']='$(^{o}C)$'
- unitNames['pa1 apiii']='$(W)$'
-
-
- #features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
-
- #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
-
- NumFeatures=len(features)
-
- df_list=[]
- for i in range(NumberOfFailures+1):
- df_list.append([])
-
- for i in range(NumberOfFailures+1):
- dftemp=[]
- for f in datafiles[i]:
- print(" ", f)
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
- df1 = pd.read_csv('./data/'+f+'.csv')
- dftemp.append(df1)
- df_list[i]=pd.concat(dftemp)
-
-
- # subsampled to 5' = 30 * 10"
- # We consider smaples every 5' because in production, we will only have data at this frequency
- subsamplingrate=30
-
- dataframe=[]
- for i in range(NumberOfFailures+1):
- dataframe.append([])
-
- for i in range(NumberOfFailures+1):
- datalength=df_list[i].shape[0]
- dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
- dataframe[i].reset_index(inplace=True,drop=True)
- dataframe[i].dropna(inplace=True)
-
-
- # Train data is first 2/3 of data
- # Test data is: last 1/3 of data
- dataTrain=[]
- dataTest=[]
- NumberOfSamplesForTest=300
-
- for i in range(NumberOfFailures+1):
- dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
- if NumberOfSamplesForTest==0: # Take all
- dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
- else:
- dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):int(dataframe[i].shape[0]*2/3)+NumberOfSamplesForTest,:])
-
- # Calculate means and stdev
- a=dataTrain[0]
- for i in range(1,NumberOfFailures+1):
- a=np.vstack((a,dataTrain[i]))
-
- means=a.mean(axis=0)
- stdevs=a.std(axis=0)
- def normalize2(train,test):
- return( (train-means)/stdevs, (test-means)/stdevs )
-
- dataTrainNorm=[]
- dataTestNorm=[]
- for i in range(NumberOfFailures+1):
- dataTrainNorm.append([])
- dataTestNorm.append([])
-
- for i in range(NumberOfFailures+1):
- (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
-
- def plotData():
- fig, axes = plt.subplots(
- nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
- )
- for i in range(NumberOfFailures+1):
- axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
- axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
- #axes[1].legend()
- #axes[0].set_ylabel(features[0])
- #axes[1].set_ylabel(features[1])
- plt.show()
-
- #plotData()
-
- def create_sequences(values, time_steps):
- output = []
- for i in range(len(values) - time_steps ):
- output.append(values[i : (i + time_steps)])
- return np.stack(output)
-
- def listToString(l):
- r=''
- for i in l:
- r+=str(i)
- return(r.replace(' ',''))
-
- timesteps=int(options.timesteps)
-
- X=dataTrainNorm[0]
- for i in range(1,NumberOfFailures+1):
- X=np.vstack((X,dataTrainNorm[i]))
-
- xtrain=create_sequences(X,timesteps)
-
- km = TimeSeriesKMeans(n_clusters=NumberOfFailures+1, metric="dtw", random_state=0)
- modelpath="model_v1_unsupervised_"+str(timesteps)+listToString(features)+".pk"
- if options.train:
- km.fit(xtrain)
- km.to_pickle(modelpath)
- else:
- km.from_pickle(modelpath)
- #km.fit_predict(xtrain)
-
- colorline=['violet','lightcoral','cyan','lime','grey']
- colordot=['darkviolet','red','blue','green','black']
-
-
- featuresToPlot=features
- indexesToPlot=[]
- for i in featuresToPlot:
- indexesToPlot.append(features.index(i))
-
-
- def plot(data,ranges):
- km.fit_predict(data)
- # Expand data to plot with the timesteps samples of last sample
- datatoplot=data[:,0,:]
- datatoplot=np.vstack((datatoplot,data[ranges[len(ranges)-1][1],:,:]))
-
- labels=[] # Labels are assigned randomly by classifer
- for i in range(len(ranges)):
- b=Counter(km.labels_[ranges[i][0]:ranges[i][1]])
- labels.append(b.most_common(1)[0][0])
-
- print("\n\n\n\LABELS: ",labels,"\n\n")
-
- NumFeaturesToPlot=len(indexesToPlot)
- plt.rcParams.update({'font.size': 16})
- fig, axes = plt.subplots(
- nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
- )
- for i in range(NumFeaturesToPlot):
- init=0
- end=ranges[0][1]
- labelsplotted=[]
- for j in range(len(ranges)):
- if j==(len(ranges)-1): # Plot the last timesteps
- classtype=labels.index(labels[j])
- if classtype in labelsplotted:
- axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
- else:
- axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
- labelsplotted.append(classtype)
- else:
- classtype=labels.index(labels[j])
- if classtype in labelsplotted:
- axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
- else:
- axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
- labelsplotted.append(classtype)
- init=end
- if j<(len(ranges)-1):
- end+=(ranges[j+1][1]-ranges[j+1][0])
- x=[]
- y=[]
- for j in range(len(ranges)):
- x.append([])
- y.append([])
-
- for j in range(len(ranges)):
- for k in range(ranges[j][0],ranges[j][1]):
- try: # Idont know why sometimes fails index !!!!
- x[labels.index(km.labels_[k])].append(k+timesteps)
- y[labels.index(km.labels_[k])].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
- except:
- x[0].append(k+timesteps)
- y[0].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
-
- labelsplotted=[]
- for j in range(len(ranges)):
- classtype=labels.index(labels[j])
- if classtype in labelsplotted:
- axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0)
- else:
- axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0,label="Class type "+str(j) )
- labelsplotted.append(classtype)
-
- if i==(NumFeatures-1):
- axes[i].legend(loc='right')
- s=''
- s+=featureNames[features[indexesToPlot[i]]]
- s+=' '+unitNames[features[indexesToPlot[i]]]
- axes[i].set_ylabel(s)
- axes[i].grid()
-
- axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
- plt.show()
-
-
- '''
- Ranges=[]
- r=0
- for i in range(NumberOfFailures+1):
- Ranges.append([r,r+dataTrainNorm[i].shape[0]])
- r+=dataTrainNorm[i].shape[0]
- # Drop the last TIME_STEPS for plotting
- Ranges[NumberOfFailures][1]=Ranges[NumberOfFailures][1]-timesteps-1
-
- plot(xtrain,Ranges)
- '''
- # Try with test data
- X=dataTestNorm[0]
- Ranges=[[0,dataTestNorm[0].shape[0]]]
- r=dataTestNorm[0].shape[0]
- for i in range(1,NumberOfFailures+1):
- X=np.vstack((X,dataTestNorm[i]))
- Ranges.append([r,r+dataTestNorm[i].shape[0]])
- r+=dataTestNorm[i].shape[0]
-
- X=np.vstack((X,dataTestNorm[0])) # We add a last segment of no fail data
- Ranges.append([r,r+dataTestNorm[0].shape[0]])
- Ranges[len(Ranges)-1][1]=Ranges[len(Ranges)-1][1]-timesteps-1
-
- xtest=create_sequences(X,timesteps)
-
-
-
-
- def anomalyMetric(labels,ranges):
- # Takes ONLY the firsts segments of Ranges
- # FP, TP: false/true positive
- # TN, FN: true/false negative
- # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
- # Precision: Rate of positive results: TP/(TP+FP)
- # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
-
- lab=[] # Labels are assigned randomly by classifer
- TP=[]
- FN=[]
- TPFP=[]
- for i in range(NumberOfFailures+1):
- TP.append([])
- FN.append([])
- TPFP.append([])
- b=Counter(labels[ranges[i][0]:ranges[i][1]])
- lab.append(b.most_common(1)[0][0])
-
- for i in range(NumberOfFailures+1):
- counttp=0
- countfn=0
- for j in range(ranges[i][0],ranges[i][1]-timesteps):
- if lab.index(labels[j])==i:
- counttp+=1
- else:
- countfn+=1
- TP[i]=counttp
- FN[i]=countfn
-
- for i in range(NumberOfFailures+1):
- count=0
- for ii in range(NumberOfFailures+1):
- for j in range(ranges[ii][0],ranges[ii][1]-timesteps):
- if lab.index(labels[j])==i:
- count+=1
- TPFP[i]=count
-
- segmentLength=[]
- for i in range(NumberOfFailures+1):
- segmentLength.append(ranges[i][1]-timesteps-ranges[i][0])
- totalSegmentLength=0
- for i in range(NumberOfFailures+1):
- totalSegmentLength+=segmentLength[i]
-
-
- Sensitivity=0
- Precision=0
- for i in range(NumberOfFailures+1):
- Sensitivity+=TP[i]/(TP[i]+FN[i])*segmentLength[i]/totalSegmentLength
- Precision+=TP[i]/(TPFP[i])*segmentLength[i]/totalSegmentLength
-
-
- print(lab)
- print("TP: ",TP)
- print("FN: ",FN)
- print("TPFP: ",TPFP)
- print("Sensitivity: ",Sensitivity)
- print("Precision: ",Precision)
- print("F1-Score: ",2*Precision*Sensitivity/(Sensitivity+Precision))
-
-
- km.fit_predict(xtest)
- anomalyMetric(km.labels_,Ranges)
- plot(xtest,Ranges)
-
|