Ei kuvausta

v2_unsupervised.py 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. # Csar Fdez, UdL, 2025
  2. # Unsupervised classification. Uses tslearn
  3. # https://tslearn.readthedocs.io/en/stable/index.html
  4. # Be careful with v0_unsupervised and all versions for supervised.
  5. # because dataTrain is not stacke before create_sequences, so,
  6. # the sets are not aligned in time
  7. # Same as v1 but changing data
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. import datetime
  11. import numpy as np
  12. import os.path
  13. from optparse import OptionParser
  14. import copy
  15. import pickle
  16. from tslearn.clustering import TimeSeriesKMeans
  17. from tslearn.neighbors import KNeighborsTimeSeries
  18. from collections import Counter
  19. parser = OptionParser()
  20. parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
  21. parser.add_option("-p", "--plot", dest="plot", help="Plot Data (false)", default=False, action="store_true")
  22. parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
  23. (options, args) = parser.parse_args()
  24. # data files arrays. Index:
  25. # 0. No failure
  26. # 1. Blocked evaporator
  27. # 2. Full Blocked condenser
  28. # 3 Fan condenser not working
  29. # 4. Open door
  30. NumberOfFailures=4
  31. datafiles={}
  32. listofFacilitySetpoint=['5-26','5-18','5-22','30','32','34']
  33. for j in listofFacilitySetpoint:
  34. datafiles[j]=[]
  35. for i in range(NumberOfFailures+1):
  36. datafiles[j].append([])
  37. # Freezer, SP=-26
  38. datafiles['5-26'][0]=['2025-01-25_5_','2025-01-26_5_','2025-01-29_5_','2025-01-30_5_','2025-01-31_5_','2025-02-01_5_','2025-02-02_5_','2025-02-03_5_','2025-02-04_5_']
  39. datafiles['5-26'][1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
  40. datafiles['5-26'][2]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
  41. datafiles['5-26'][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
  42. datafiles['5-26'][4]=['2025-02-13_5_','2025-02-14_5_','2025-02-15_5_','2025-02-16_5_','2025-02-17_5_','2025-02-18_5_','2025-02-19_5_']
  43. # Freezer, SP=-18
  44. datafiles['5-18'][0]=['2025-01-21_5_','2025-01-22_5_','2025-01-23_5_'] #
  45. datafiles['5-18'][1]=['2025-02-17_5_','2025-02-18_5_','2025-02-19_5_'] #
  46. datafiles['5-18'][2]=['2025-03-10_5_','2025-03-11_5_','2025-03-12_5_'] #
  47. datafiles['5-18'][3]=['2025-01-04_5_','2025-01-05_5_','2025-01-06_5_','2025-01-07_5_'] #
  48. datafiles['5-18'][4]=['2025-04-30_5_','2025-05-01_5_','2025-05-02_5_','2025-05-03_5_','2025-05-04_5_','2025-05-05_5_'] # Faltens aquestes dades
  49. # Freezer, SP=-22
  50. datafiles['5-22'][0]=['2025-03-13_5_','2025-03-14_5_','2025-03-15_5_','2025-03-16_5_']
  51. datafiles['5-22'][1]=['2025-03-21_5_','2025-03-22_5_','2025-03-23_5_','2025-03-24_5_','2025-03-25_5_'] #
  52. datafiles['5-22'][2]=['2025-03-26_5_','2025-03-27_5_','2025-03-28_5_']
  53. datafiles['5-22'][3]=['2025-03-31_5_','2025-04-01_5_','2025-04-02_5_','2025-04-03_5_']
  54. datafiles['5-22'][4]=['2025-03-17_5_']
  55. # Refrigerator 0
  56. datafiles['30'][0]=['2025-01-21_3_','2025-01-22_3_','2025-01-23_3_','2025-01-24_3_','2025-01-25_3_','2025-01-26_3_']
  57. datafiles['30'][1]=['2024-12-11_3_','2024-12-12_3_','2024-12-13_3_','2024-12-14_3_','2024-12-15_3_']
  58. datafiles['30'][2]=['2024-12-18_3_','2024-12-19_3_','2024-12-20_3_']
  59. datafiles['30'][3]=['2024-12-28_3_','2024-12-29_3_','2024-12-30_3_','2024-12-31_3_','2025-01-01_3_']
  60. datafiles['30'][4]=['2025-02-12_3_','2025-02-13_3_','2025-02-14_3_','2025-02-15_3_','2025-02-16_3_','2025-02-17_3_','2025-02-18_3_','2025-02-19_3_'] # es solapa amb ventilador no funcionant. i els dies 20 i 21 no hi son
  61. # Refrigerator 2
  62. datafiles['32'][0]=['2025-03-13_3_','2025-03-14_3_','2025-03-15_3_','2025-03-16_3_']
  63. datafiles['32'][1]=['2025-03-10_3_']
  64. datafiles['32'][2]=['2025-03-17_3_']
  65. datafiles['32'][3]=['2025-03-24_3_','2025-03-25_3_','2025-03-26_3_']
  66. datafiles['32'][4]=['2025-03-27_3_','2025-03-28_3_']
  67. # Refrigerator 4
  68. datafiles['34'][0]=['2025-03-31_3_','2025-04-01_3_','2025-04-02_3_','2025-04-03_3_']
  69. datafiles['34'][1]=['2025-04-25_3_','2025-04-26_3_','2025-04-27_3_','2025-04-28_3_'] # aquestes dades no hi son
  70. datafiles['34'][2]=['2025-04-11_3_','2025-04-12_3_','2025-04-13_3_','2025-04-14_3_']
  71. datafiles['34'][3]=['2025-04-30_3_','2025-05-01_3_','2025-05-02_3_','2025-05-03_3_','2025-05-04_3_','2025-05-05_3_']
  72. datafiles['34'][4]=['2025-04-23_3_','2025-04-24_3_','2025-04-25_3_']
  73. # data files arrays. Index:
  74. # 0. No failure
  75. # 1. Blocked evaporator
  76. # 2. Full Blocked condenser
  77. # 3 Fan condenser not working
  78. # 4. Open door
  79. facilitySetpoint='32'
  80. # Features suggested by Xavier
  81. # Care with 'tc s3' because on datafiles[0] is always nulll
  82. # Seems to be incoropored in new tests
  83. #r1s5 supply air flow temperature
  84. #r1s1 inlet evaporator temperature
  85. #r1s4 condenser outlet
  86. # VAriables r1s4 and pa1 apiii may not exists in cloud controlers
  87. features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
  88. features=['r1 s1','r1 s4','r1 s5']
  89. featureNames={}
  90. featureNames['r1 s1']='$T_{evap}$'
  91. featureNames['r1 s4']='$T_{cond}$'
  92. featureNames['r1 s5']='$T_{air}$'
  93. featureNames['pa1 apiii']='$P_{elec}$'
  94. unitNames={}
  95. unitNames['r1 s1']='$(^{o}C)$'
  96. unitNames['r1 s4']='$(^{o}C)$'
  97. unitNames['r1 s5']='$(^{o}C)$'
  98. unitNames['pa1 apiii']='$(W)$'
  99. #features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
  100. #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
  101. NumFeatures=len(features)
  102. df_list=[]
  103. for i in range(NumberOfFailures+1):
  104. df_list.append([])
  105. for i in range(NumberOfFailures+1):
  106. dftemp=[]
  107. for f in datafiles[facilitySetpoint][i]:
  108. print(" ", f)
  109. #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
  110. df1 = pd.read_csv('./data/'+f+'.csv')
  111. dftemp.append(df1)
  112. df_list[i]=pd.concat(dftemp)
  113. # subsampled to 5' = 30 * 10"
  114. # We consider smaples every 5' because in production, we will only have data at this frequency
  115. subsamplingrate=30
  116. dataframe=[]
  117. for i in range(NumberOfFailures+1):
  118. dataframe.append([])
  119. for i in range(NumberOfFailures+1):
  120. datalength=df_list[i].shape[0]
  121. dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
  122. dataframe[i].reset_index(inplace=True,drop=True)
  123. dataframe[i].dropna(inplace=True)
  124. # Train data is first 2/3 of data
  125. # Test data is: last 1/3 of data
  126. dataTrain=[]
  127. dataTest=[]
  128. NumberOfSamplesForTest=0
  129. for i in range(NumberOfFailures+1):
  130. dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
  131. if NumberOfSamplesForTest==0: # Take all
  132. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
  133. else:
  134. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):int(dataframe[i].shape[0]*2/3)+NumberOfSamplesForTest,:])
  135. # Calculate means and stdev
  136. a=dataTrain[0]
  137. for i in range(1,NumberOfFailures+1):
  138. a=np.vstack((a,dataTrain[i]))
  139. means=a.mean(axis=0)
  140. stdevs=a.std(axis=0)
  141. def normalize2(train,test):
  142. return( (train-means)/stdevs, (test-means)/stdevs )
  143. dataTrainNorm=[]
  144. dataTestNorm=[]
  145. for i in range(NumberOfFailures+1):
  146. dataTrainNorm.append([])
  147. dataTestNorm.append([])
  148. for i in range(NumberOfFailures+1):
  149. (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
  150. def plotData():
  151. fig, axes = plt.subplots(
  152. nrows=NumberOfFailures+1, ncols=NumFeatures, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  153. )
  154. for i in range(NumberOfFailures+1):
  155. for j in range(NumFeatures):
  156. axes[i][j].plot(np.concatenate((dataTrainNorm[i][:,j],dataTestNorm[i][:,j])),label="Fail "+str(i)+", feature 0")
  157. #axes[1].legend()
  158. #axes[0].set_ylabel(features[0])
  159. #axes[1].set_ylabel(features[1])
  160. plt.show()
  161. if options.plot:
  162. plotData()
  163. exit()
  164. def create_sequences(values, time_steps):
  165. output = []
  166. for i in range(len(values) - time_steps ):
  167. output.append(values[i : (i + time_steps)])
  168. return np.stack(output)
  169. def listToString(l):
  170. r=''
  171. for i in l:
  172. r+=str(i)
  173. return(r.replace(' ',''))
  174. timesteps=int(options.timesteps)
  175. X=dataTrainNorm[0]
  176. for i in range(1,NumberOfFailures+1):
  177. X=np.vstack((X,dataTrainNorm[i]))
  178. xtrain=create_sequences(X,timesteps)
  179. km = TimeSeriesKMeans(n_clusters=NumberOfFailures+1, metric="dtw", random_state=0)
  180. modelpath="model_v2_unsupervised_"+facilitySetpoint+"_"+str(timesteps)+listToString(features)+".pk"
  181. if options.train:
  182. km.fit(xtrain)
  183. km.to_pickle(modelpath)
  184. else:
  185. km.from_pickle(modelpath)
  186. #km.fit_predict(xtrain)
  187. colorline=['violet','lightcoral','cyan','lime','grey']
  188. colordot=['darkviolet','red','blue','green','black']
  189. featuresToPlot=features
  190. indexesToPlot=[]
  191. for i in featuresToPlot:
  192. indexesToPlot.append(features.index(i))
  193. def plot(data,ranges):
  194. km.fit_predict(data)
  195. # Expand data to plot with the timesteps samples of last sample
  196. datatoplot=data[:,0,:]
  197. datatoplot=np.vstack((datatoplot,data[ranges[len(ranges)-1][1],:,:]))
  198. labels=[] # Labels are assigned randomly by classifer
  199. for i in range(len(ranges)):
  200. b=Counter(km.labels_[ranges[i][0]:ranges[i][1]])
  201. labels.append(b.most_common(1)[0][0])
  202. print("\n\n\n LABELS: ",labels,"\n\n")
  203. NumFeaturesToPlot=len(indexesToPlot)
  204. plt.rcParams.update({'font.size': 16})
  205. fig, axes = plt.subplots(
  206. nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
  207. )
  208. for i in range(NumFeaturesToPlot):
  209. init=0
  210. end=ranges[0][1]
  211. labelsplotted=[]
  212. for j in range(len(ranges)):
  213. if j==(len(ranges)-1): # Plot the last timesteps
  214. classtype=labels.index(labels[j])
  215. if classtype in labelsplotted:
  216. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  217. else:
  218. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  219. labelsplotted.append(classtype)
  220. else:
  221. classtype=labels.index(labels[j])
  222. if classtype in labelsplotted:
  223. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  224. else:
  225. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  226. labelsplotted.append(classtype)
  227. init=end
  228. if j<(len(ranges)-1):
  229. end+=(ranges[j+1][1]-ranges[j+1][0])
  230. x=[]
  231. y=[]
  232. for j in range(len(ranges)):
  233. x.append([])
  234. y.append([])
  235. for j in range(len(ranges)):
  236. for k in range(ranges[j][0],ranges[j][1]):
  237. try: # Idont know why sometimes fails index !!!!
  238. x[labels.index(km.labels_[k])].append(k+timesteps)
  239. y[labels.index(km.labels_[k])].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  240. except:
  241. x[0].append(k+timesteps)
  242. y[0].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  243. labelsplotted=[]
  244. for j in range(len(ranges)):
  245. classtype=labels.index(labels[j])
  246. if classtype in labelsplotted:
  247. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0)
  248. else:
  249. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0,label="Class type "+str(j) )
  250. labelsplotted.append(classtype)
  251. if i==(NumFeatures-1):
  252. axes[i].legend(loc='right')
  253. s=''
  254. s+=featureNames[features[indexesToPlot[i]]]
  255. s+=' '+unitNames[features[indexesToPlot[i]]]
  256. axes[i].set_ylabel(s)
  257. axes[i].grid()
  258. axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
  259. plt.show()
  260. '''
  261. Ranges=[]
  262. r=0
  263. for i in range(NumberOfFailures+1):
  264. Ranges.append([r,r+dataTrainNorm[i].shape[0]])
  265. r+=dataTrainNorm[i].shape[0]
  266. # Drop the last TIME_STEPS for plotting
  267. Ranges[NumberOfFailures][1]=Ranges[NumberOfFailures][1]-timesteps-1
  268. plot(xtrain,Ranges)
  269. '''
  270. # Try with test data
  271. X=dataTestNorm[0]
  272. Ranges=[[0,dataTestNorm[0].shape[0]]]
  273. r=dataTestNorm[0].shape[0]
  274. for i in range(1,NumberOfFailures+1):
  275. X=np.vstack((X,dataTestNorm[i]))
  276. Ranges.append([r,r+dataTestNorm[i].shape[0]])
  277. r+=dataTestNorm[i].shape[0]
  278. #X=np.vstack((X,dataTestNorm[0])) # We add a last segment of no fail data
  279. #Ranges.append([r,r+dataTestNorm[0].shape[0]])
  280. Ranges[len(Ranges)-1][1]=Ranges[len(Ranges)-1][1]-timesteps-1
  281. xtest=create_sequences(X,timesteps)
  282. def anomalyMetric(labels,ranges):
  283. # Takes ONLY the firsts segments of Ranges
  284. # FP, TP: false/true positive
  285. # TN, FN: true/false negative
  286. # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
  287. # Precision: Rate of positive results: TP/(TP+FP)
  288. # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
  289. lab=[] # Labels are assigned randomly by classifer
  290. TP=[]
  291. FN=[]
  292. TPFP=[]
  293. for i in range(NumberOfFailures+1):
  294. TP.append([])
  295. FN.append([])
  296. TPFP.append([])
  297. b=Counter(labels[ranges[i][0]:ranges[i][1]])
  298. lab.append(b.most_common(1)[0][0])
  299. for i in range(NumberOfFailures+1):
  300. counttp=0
  301. countfn=0
  302. for j in range(ranges[i][0],ranges[i][1]-timesteps):
  303. if lab.index(labels[j])==i:
  304. counttp+=1
  305. else:
  306. countfn+=1
  307. TP[i]=counttp
  308. FN[i]=countfn
  309. for i in range(NumberOfFailures+1):
  310. count=0
  311. for ii in range(NumberOfFailures+1):
  312. for j in range(ranges[ii][0],ranges[ii][1]-timesteps):
  313. if lab.index(labels[j])==i:
  314. count+=1
  315. TPFP[i]=count
  316. segmentLength=[]
  317. for i in range(NumberOfFailures+1):
  318. segmentLength.append(ranges[i][1]-timesteps-ranges[i][0])
  319. totalSegmentLength=0
  320. for i in range(NumberOfFailures+1):
  321. totalSegmentLength+=segmentLength[i]
  322. Sensitivity=0
  323. Precision=0
  324. for i in range(NumberOfFailures+1):
  325. Sensitivity+=TP[i]/(TP[i]+FN[i])*segmentLength[i]/totalSegmentLength
  326. Precision+=TP[i]/(TPFP[i])*segmentLength[i]/totalSegmentLength
  327. print(lab)
  328. print("TP: ",TP)
  329. print("FN: ",FN)
  330. print("TPFP: ",TPFP)
  331. print("Sensitivity: ",Sensitivity)
  332. print("Precision: ",Precision)
  333. print("F1-Score: ",2*Precision*Sensitivity/(Sensitivity+Precision))
  334. km.fit_predict(xtest)
  335. anomalyMetric(km.labels_,Ranges)
  336. plot(xtest,Ranges)

Powered by TurnKey Linux.