123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- # Csar Fdez, UdL, 2025
- # Changes from v1: Normalization
- # IN v1, each failure type has its own normalization pars (mean and stdevs)
- # In v2, mean and stdev is the same for all data
- # v3.py trains the models looping in TIME_STEPS (4,8,12,16,20,24,....) finding the optimal Threshold factor
-
- # Derived from v3_class, derived from v3.py with code from v1_multifailure.py
- # This code don't train for multiple time steps !!
-
- import pandas as pd
- import matplotlib.pyplot as plt
- import datetime
- import numpy as np
- import keras
- import os.path
- from keras import layers
- from optparse import OptionParser
- import copy
- import pickle
-
-
- parser = OptionParser()
- parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
- parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
- #parser.add_option("-f", "--thresholdfactor", dest="TF", help="Threshold Factor ", default=1.4)
- # threshold makes no sense when classifying, becaues we apply many models and decide class for the less MSE
-
- (options, args) = parser.parse_args()
-
-
- # data files arrays. Index:
- # 0. No failure
- # 1. Blocked evaporator
- # 2. Full Blocked condenser
- # 3. Partial Blocked condenser
- # 4 Fan condenser not working
- # 5. Open door
-
-
- NumberOfFailures=4 # So far, we have only data for the first 4 types of failures
- datafiles=[]
- for i in range(NumberOfFailures+1):
- datafiles.append([])
-
- # Next set of ddata corresponds to Freezer, SP=-26
- datafiles[0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_','2025-01-27_5_','2025-01-28_5_']
- datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
- #datafiles[1]=['2024-12-17_5_','2024-12-16_5_','2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] # This have transitions
- datafiles[2]=['2024-12-18_5_','2024-12-19_5_']
- datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
- datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
- #datafiles[4]=['2024-12-27_5_','2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_'] # This have transitions
-
- #datafiles[4]=[]
-
- # Features suggested by Xavier
- # Care with 'tc s3' because on datafiles[0] is always nulll
- # Seems to be incoropored in new tests
-
- #r1s5 supply air flow temperature
- #r1s1 inlet evaporator temperature
- #r1s4 condenser outlet
-
- # VAriables r1s4 and pa1 apiii may not exists in cloud controlers
-
-
- features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
- features=['r1 s1','r1 s4','r1 s5']
- features=['r1 s5']
- # Feature combination suggested by AKO
- features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
- features=['r1 s1','r1 s4','r1 s5']
- features=['r1 s1','r1 s5','pa1 apiii']
- features=['r1 s5','pa1 apiii']
- features=['r1 s1','r1 s5']
- features=['r1 s5']
-
-
-
- featureNames={}
- featureNames['r1 s1']='$T_{evap}$'
- featureNames['r1 s4']='$T_{cond}$'
- featureNames['r1 s5']='$T_{air}$'
- featureNames['pa1 apiii']='$P_{elec}$'
-
- unitNames={}
- unitNames['r1 s1']='$(^{o}C)$'
- unitNames['r1 s4']='$(^{o}C)$'
- unitNames['r1 s5']='$(^{o}C)$'
- unitNames['pa1 apiii']='$(W)$'
-
-
- #features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
-
- #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
-
- NumFeatures=len(features)
-
- df_list=[]
- for i in range(NumberOfFailures+1):
- df_list.append([])
-
- for i in range(NumberOfFailures+1):
- dftemp=[]
- for f in datafiles[i]:
- print(" ", f)
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
- df1 = pd.read_csv('./data/'+f+'.csv')
- dftemp.append(df1)
- df_list[i]=pd.concat(dftemp)
-
-
- # subsampled to 5' = 30 * 10"
- # We consider smaples every 5' because in production, we will only have data at this frequency
- subsamplingrate=30
-
- dataframe=[]
- for i in range(NumberOfFailures+1):
- dataframe.append([])
-
- for i in range(NumberOfFailures+1):
- datalength=df_list[i].shape[0]
- dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
- dataframe[i].reset_index(inplace=True,drop=True)
- dataframe[i].dropna(inplace=True)
-
-
- # Train data is first 2/3 of data
- # Test data is: last 1/3 of data
- dataTrain=[]
- dataTest=[]
- for i in range(NumberOfFailures+1):
- dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
- dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
-
- # Calculate means and stdev
- a=dataTrain[0]
- for i in range(1,NumberOfFailures+1):
- a=np.vstack((a,dataTrain[i]))
-
- means=a.mean(axis=0)
- stdevs=a.std(axis=0)
- def normalize2(train,test):
- return( (train-means)/stdevs, (test-means)/stdevs )
-
- dataTrainNorm=[]
- dataTestNorm=[]
- for i in range(NumberOfFailures+1):
- dataTrainNorm.append([])
- dataTestNorm.append([])
-
- for i in range(NumberOfFailures+1):
- (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
-
- def plotData():
- fig, axes = plt.subplots(
- nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
- )
- for i in range(NumberOfFailures+1):
- axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
- axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
- #axes[1].legend()
- #axes[0].set_ylabel(features[0])
- #axes[1].set_ylabel(features[1])
- plt.show()
-
- #plotData()
- #exit(0)
-
-
- NumFilters=64
- KernelSize=7
- DropOut=0.2
- ThresholdFactor=1.4
- def create_sequences(values, time_steps):
- output = []
- for i in range(len(values) - time_steps + 1):
- output.append(values[i : (i + time_steps)])
- return np.stack(output)
-
-
-
- def listToString(l):
- r=''
- for i in l:
- r+=str(i)
- return(r.replace(' ',''))
-
-
- model=[]
- modelckpt_callback =[]
- es_callback =[]
- path_checkpoint=[]
-
- timesteps=int(options.timesteps)
- x_train=[]
- for i in range(NumberOfFailures+1):
- x_train.append(create_sequences(dataTrainNorm[i],timesteps))
- model.append([])
- model[i] = keras.Sequential(
- [
- layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])),
- layers.Conv1D(
- filters=NumFilters,
- kernel_size=KernelSize,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Dropout(rate=DropOut),
- layers.Conv1D(
- filters=int(NumFilters/2),
- kernel_size=KernelSize,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Conv1DTranspose(
- filters=int(NumFilters/2),
- kernel_size=KernelSize,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Dropout(rate=DropOut),
- layers.Conv1DTranspose(
- filters=NumFilters,
- kernel_size=KernelSize,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"),
- ]
- )
- model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
- model[i].summary()
- path_checkpoint.append("model_class_v4_"+str(i)+"_"+str(timesteps)+listToString(features)+"_checkpoint.weights.h5")
- es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15))
- modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,))
-
-
- if options.train:
- history=[]
- for i in range(NumberOfFailures+1):
- history.append(model[i].fit( x_train[i], x_train[i], epochs=400, batch_size=128, validation_split=0.3, callbacks=[ es_callback[i], modelckpt_callback[i] ],))
-
- x_train_pred=model[i].predict(x_train[i])
- else:
- for i in range(NumberOfFailures+1):
- model[i].load_weights(path_checkpoint[i])
-
-
-
- # Let's plot some features
-
- colorline=['black','violet','lightcoral','cyan','lime','grey']
- colordot=['grey','darkviolet','red','blue','green','black']
-
- #featuresToPlot=['r1 s1','r1 s2','r1 s3','pa1 apiii']
- featuresToPlot=features
-
- indexesToPlot=[]
- for i in featuresToPlot:
- indexesToPlot.append(features.index(i))
-
-
-
- # 2nd scenario. Go over anomalies and classify it by less error
- datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]]
- x_test=create_sequences(datalist[0],int(options.timesteps))
- for i in range(1,len(datalist)):
- x_test=np.vstack((x_test,create_sequences(datalist[i],int(options.timesteps))))
-
- # Define ranges for plotting in different colors
- testRanges=[]
- r=0
- for i in range(len(datalist)):
- testRanges.append([r,r+datalist[i].shape[0]-int(options.timesteps)])
- r+=datalist[i].shape[0]-int(options.timesteps)
-
- testClasses=[0,1,2,3,4]
-
- if not len(testClasses)==len(testRanges):
- print("ERROR: testClasses and testRanges must have same length")
- exit(0)
-
- x_test_predict=[]
- for m in range(NumberOfFailures+1):
- x_test_predict.append(model[m].predict(x_test))
-
- x_test_predict=np.array((x_test_predict))
- test_mae_loss =[]
- for m in range(NumberOfFailures+1):
- test_mae_loss.append(np.mean(np.abs(x_test_predict[m,:,:,:] - x_test), axis=1))
-
- test_mae_loss=np.array((test_mae_loss))
- test_mae_loss_average=np.mean(test_mae_loss,axis=2) # average over features
- classes=np.argmin(test_mae_loss_average,axis=0)
-
- x=[]
- y=[]
- for j in range(NumberOfFailures+1):
- x.append([])
- y.append([])
- for j in range(NumberOfFailures+1):
- for k in range(testRanges[j][0],testRanges[j][1]):
- if not classes[k]==testClasses[j]:
- x[classes[k]].append(k)
- y[classes[k]].append(x_test[k,0,indexesToPlot[0]]*stdevs[0]+means[0])
-
-
- def plotData4():
- NumFeaturesToPlot=len(indexesToPlot)
- plt.rcParams.update({'font.size': 16})
- fig, axes = plt.subplots(
- nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
- )
- for i in range(NumFeaturesToPlot):
- init=0
- end=testRanges[0][1]
- for j in range(NumberOfFailures+1):
- if NumFeaturesToPlot==1:
- axes.plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Class "+str(j), color=colorline[j],linewidth=1)
- else:
- axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Class "+str(j), color=colorline[j],linewidth=1)
- if j<NumberOfFailures:
- init=end
- end+=(testRanges[j+1][1]-testRanges[j+1][0])
-
- #if i==0:
- # axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
-
-
-
- s=''
- s+=featureNames[features[indexesToPlot[i]]]
- s+=' '+unitNames[features[indexesToPlot[i]]]
- if NumFeaturesToPlot==1:
- axes.set_ylabel(s)
- axes.grid()
- else:
- axes[i].set_ylabel(s)
- axes[i].grid()
-
- for j in range(NumberOfFailures+1):
- if NumFeaturesToPlot==1:
- axes.plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
- else:
- axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
-
- if NumFeaturesToPlot==1:
- axes.legend(ncol=4,loc=(0.1,0.98))
- else:
- axes[0].legend(ncol=4,loc=(0.1,0.98))
-
-
- #axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
- plt.show()
-
- def whichClass(k,ranges):
- for i in range(NumberOfFailures+1):
- if k in range(ranges[i][0],ranges[i][1]):
- return(i)
- print("Error: Class not exists")
- exit(0)
-
- ## It remains to implemenent anomaly metrics for each failure type
- def anomalyMetric(classes,testranges,testclasses):
- # FP, TP: false/true positive
- # TN, FN: true/false negative
- # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
- # Precision: Rate of positive results: TP/(TP+FP)
- # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
- TP=np.zeros(NumberOfFailures+1)
- FP=np.zeros(NumberOfFailures+1)
- FN=np.zeros(NumberOfFailures+1)
- Sensitivity=np.zeros(NumberOfFailures+1)
- Precision=np.zeros(NumberOfFailures+1)
- for i in range(len(testranges)):
- for k in range(testranges[i][0],testranges[i][1]):
- if classes[k]==testclasses[i]:
- TP[i]+=1
- else:
- FP[i]+=1
- for k in range(testranges[NumberOfFailures][1]):
- for i in range(len(testranges)):
- classK=whichClass(k,testranges)
- if not classK==testClasses[i]:
- if not classes[k]==classK:
- FN[classes[k]]+=1
-
- for i in range(NumberOfFailures+1):
- Sensitivity[i]=TP[i]/(TP[i]+FN[i])
- Precision[i]=TP[i]/(TP[i]+FP[i])
- S=Sensitivity.mean()
- P=Precision.mean()
- F1=2*S*P/(S+P)
- print("Sensitivity: ",Sensitivity)
- print("S: ",S)
- print("Precision: ",Precision)
- print("P: ",P)
- print("F1-Score: ",F1)
-
- anomalyMetric(classes,testRanges,testClasses)
- plotData4()
- exit(0)
-
|