Нема описа

v2_unsupervised.py 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. # Csar Fdez, UdL, 2025
  2. # Unsupervised classification. Uses tslearn
  3. # https://tslearn.readthedocs.io/en/stable/index.html
  4. # Be careful with v0_unsupervised and all versions for supervised.
  5. # because dataTrain is not stacke before create_sequences, so,
  6. # the sets are not aligned in time
  7. # Same as v1 but changing data
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. import datetime
  11. import numpy as np
  12. import os.path
  13. from optparse import OptionParser
  14. import copy
  15. import pickle
  16. from tslearn.clustering import TimeSeriesKMeans
  17. from tslearn.neighbors import KNeighborsTimeSeries
  18. from collections import Counter
  19. parser = OptionParser()
  20. parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
  21. parser.add_option("-p", "--plot", dest="plot", help="Plot Data (false)", default=False, action="store_true")
  22. parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS (default 12)", default=12)
  23. parser.add_option("-f", "--facilitysetpoint", dest="fsp", help="Facility and Set Point (default 5-26)", default="5-26")
  24. (options, args) = parser.parse_args()
  25. # data files arrays. Index:
  26. # 0. No failure
  27. # 1. Blocked evaporator
  28. # 2. Full Blocked condenser
  29. # 3 Fan condenser not working
  30. # 4. Open door
  31. FailureName=['No Fail','Block Evap', 'Block Cond', 'Not Fan Cond', 'Open Door']
  32. NumberOfFailures=4
  33. datafiles={}
  34. listofFacilitySetpoint=['5-26','5-18','5-22','30','32','34']
  35. for j in listofFacilitySetpoint:
  36. datafiles[j]=[]
  37. for i in range(NumberOfFailures+1):
  38. datafiles[j].append([])
  39. # Freezer, SP=-26
  40. datafiles['5-26'][0]=['2025-01-25_5_','2025-01-26_5_','2025-01-29_5_','2025-01-30_5_','2025-01-31_5_','2025-02-01_5_','2025-02-02_5_','2025-02-03_5_','2025-02-04_5_']
  41. datafiles['5-26'][1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
  42. datafiles['5-26'][2]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
  43. datafiles['5-26'][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
  44. datafiles['5-26'][4]=['2025-02-13_5_','2025-02-14_5_','2025-02-15_5_','2025-02-16_5_','2025-02-17_5_','2025-02-18_5_','2025-02-19_5_']
  45. # Freezer, SP=-18
  46. datafiles['5-18'][0]=['2025-01-21_5_','2025-01-22_5_','2025-01-23_5_'] #
  47. datafiles['5-18'][1]=['2025-02-17_5_','2025-02-18_5_','2025-02-19_5_'] #
  48. datafiles['5-18'][2]=['2025-03-10_5_','2025-03-11_5_','2025-03-12_5_'] #
  49. datafiles['5-18'][3]=['2025-01-04_5_','2025-01-05_5_','2025-01-06_5_','2025-01-07_5_'] #
  50. datafiles['5-18'][4]=['2025-04-30_5_','2025-05-01_5_','2025-05-02_5_','2025-05-03_5_','2025-05-04_5_','2025-05-05_5_'] #
  51. # Freezer, SP=-22
  52. datafiles['5-22'][0]=['2025-03-13_5_','2025-03-14_5_','2025-03-15_5_','2025-03-16_5_']
  53. datafiles['5-22'][1]=['2025-03-21_5_','2025-03-22_5_','2025-03-23_5_','2025-03-24_5_','2025-03-25_5_'] #
  54. datafiles['5-22'][2]=['2025-03-26_5_','2025-03-27_5_','2025-03-28_5_']
  55. datafiles['5-22'][3]=['2025-03-31_5_','2025-04-01_5_','2025-04-02_5_','2025-04-03_5_']
  56. datafiles['5-22'][4]=['2025-03-17_5_']
  57. # Refrigerator 0
  58. datafiles['30'][0]=['2025-01-21_3_','2025-01-22_3_','2025-01-23_3_','2025-01-24_3_','2025-01-25_3_','2025-01-26_3_']
  59. datafiles['30'][1]=['2024-12-11_3_','2024-12-12_3_','2024-12-13_3_','2024-12-14_3_','2024-12-15_3_']
  60. datafiles['30'][2]=['2024-12-18_3_','2024-12-19_3_','2024-12-20_3_']
  61. datafiles['30'][3]=['2024-12-28_3_','2024-12-29_3_','2024-12-30_3_','2024-12-31_3_','2025-01-01_3_']
  62. #datafiles['30'][4]=['2025-02-12_3_','2025-02-13_3_','2025-02-14_3_','2025-02-15_3_','2025-02-16_3_','2025-02-17_3_','2025-02-18_3_','2025-02-19_3_'] # es solapa amb ventilador no funcionant. i els dies 20 i 21 no hi son
  63. datafiles['30'][4]=['2025-05-08_3_','2025-05-09_3_','2025-05-10_3_','2025-05-11_3_','2025-05-12_3_']
  64. # Refrigerator 2
  65. datafiles['32'][0]=['2025-03-13_3_','2025-03-14_3_','2025-03-15_3_','2025-03-16_3_']
  66. datafiles['32'][1]=['2025-03-10_3_']
  67. datafiles['32'][2]=['2025-03-17_3_']
  68. datafiles['32'][3]=['2025-03-24_3_','2025-03-25_3_','2025-03-26_3_']
  69. datafiles['32'][4]=['2025-03-27_3_','2025-03-28_3_']
  70. # Refrigerator 4
  71. datafiles['34'][0]=['2025-03-31_3_','2025-04-01_3_','2025-04-02_3_','2025-04-03_3_']
  72. datafiles['34'][1]=['2025-04-25_3_','2025-04-26_3_','2025-04-27_3_','2025-04-28_3_'] # aquestes dades no hi son
  73. # diuen: que amb aquest set no obtenen gel i aquest experiment es pot descartar ????
  74. datafiles['34'][2]=['2025-04-11_3_','2025-04-12_3_','2025-04-13_3_','2025-04-14_3_']
  75. datafiles['34'][3]=['2025-04-30_3_','2025-05-01_3_','2025-05-02_3_','2025-05-03_3_','2025-05-04_3_','2025-05-05_3_']
  76. datafiles['34'][4]=['2025-04-23_3_','2025-04-24_3_','2025-04-25_3_']
  77. # data files arrays. Index:
  78. # 0. No failure
  79. # 1. Blocked evaporator
  80. # 2. Full Blocked condenser
  81. # 3 Fan condenser not working
  82. # 4. Open door
  83. facilitySetpoint=options.fsp
  84. # Features suggested by Xavier
  85. # Care with 'tc s3' because on datafiles[0] is always nulll
  86. # Seems to be incoropored in new tests
  87. #r1s5 supply air flow temperature
  88. #r1s1 inlet evaporator temperature
  89. #r1s4 condenser outlet
  90. # VAriables r1s4 and pa1 apiii may not exists in cloud controlers
  91. features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
  92. #features=['r1 s1','r1 s4','r1 s5']
  93. featureNames={}
  94. featureNames['r1 s1']='$T_{evap}$'
  95. featureNames['r1 s4']='$T_{cond}$'
  96. featureNames['r1 s5']='$T_{air}$'
  97. featureNames['pa1 apiii']='$P_{elec}$'
  98. unitNames={}
  99. unitNames['r1 s1']='$(^{o}C)$'
  100. unitNames['r1 s4']='$(^{o}C)$'
  101. unitNames['r1 s5']='$(^{o}C)$'
  102. unitNames['pa1 apiii']='$(W)$'
  103. #features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
  104. #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
  105. NumFeatures=len(features)
  106. df_list=[]
  107. for i in range(NumberOfFailures+1):
  108. df_list.append([])
  109. for i in range(NumberOfFailures+1):
  110. dftemp=[]
  111. for f in datafiles[facilitySetpoint][i]:
  112. print(" ", f)
  113. #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
  114. df1 = pd.read_csv('./data/'+f+'.csv')
  115. dftemp.append(df1)
  116. df_list[i]=pd.concat(dftemp)
  117. # subsampled to 5' = 30 * 10"
  118. # We consider smaples every 5' because in production, we will only have data at this frequency
  119. subsamplingrate=30
  120. dataframe=[]
  121. for i in range(NumberOfFailures+1):
  122. dataframe.append([])
  123. for i in range(NumberOfFailures+1):
  124. datalength=df_list[i].shape[0]
  125. dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
  126. dataframe[i].reset_index(inplace=True,drop=True)
  127. dataframe[i].dropna(inplace=True)
  128. # Train data is first 2/3 of data
  129. # Test data is: last 1/3 of data
  130. dataTrain=[]
  131. dataTest=[]
  132. NumberOfSamplesForTest=0
  133. for i in range(NumberOfFailures+1):
  134. dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
  135. if NumberOfSamplesForTest==0: # Take all
  136. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
  137. else:
  138. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):int(dataframe[i].shape[0]*2/3)+NumberOfSamplesForTest,:])
  139. # Calculate means and stdev
  140. a=dataTrain[0]
  141. for i in range(1,NumberOfFailures+1):
  142. a=np.vstack((a,dataTrain[i]))
  143. means=a.mean(axis=0)
  144. stdevs=a.std(axis=0)
  145. def normalize2(train,test):
  146. return( (train-means)/stdevs, (test-means)/stdevs )
  147. dataTrainNorm=[]
  148. dataTestNorm=[]
  149. for i in range(NumberOfFailures+1):
  150. dataTrainNorm.append([])
  151. dataTestNorm.append([])
  152. for i in range(NumberOfFailures+1):
  153. (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
  154. def plotData():
  155. fig, axes = plt.subplots(
  156. nrows=NumberOfFailures+1, ncols=NumFeatures, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  157. )
  158. for i in range(NumberOfFailures+1):
  159. for j in range(NumFeatures):
  160. #axes[i][j].plot(np.concatenate((dataTrainNorm[i][:,j],dataTestNorm[i][:,j])),label="Fail "+str(i)+", feature 0")
  161. axes[i][j].plot(np.concatenate((dataTrain[i][:,j],dataTest[i][:,j])),label="Fail "+str(i)+", feature 0")
  162. if i==(NumberOfFailures):
  163. axes[i][j].set_xlabel(features[j])
  164. if j==0:
  165. axes[i][j].set_ylabel(FailureName[i])
  166. #axes[1].legend()
  167. #axes[0].set_ylabel(features[0])
  168. #axes[1].set_ylabel(features[1])
  169. plt.show()
  170. if options.plot:
  171. plotData()
  172. exit()
  173. def create_sequences(values, time_steps):
  174. output = []
  175. for i in range(len(values) - time_steps ):
  176. output.append(values[i : (i + time_steps)])
  177. return np.stack(output)
  178. def listToString(l):
  179. r=''
  180. for i in l:
  181. r+=str(i)
  182. return(r.replace(' ',''))
  183. timesteps=int(options.timesteps)
  184. X=dataTrainNorm[0]
  185. for i in range(1,NumberOfFailures+1):
  186. X=np.vstack((X,dataTrainNorm[i]))
  187. xtrain=create_sequences(X,timesteps)
  188. km = TimeSeriesKMeans(n_clusters=NumberOfFailures+1, metric="dtw", random_state=0)
  189. modelpath="model_v2_unsupervised_"+facilitySetpoint+"_"+str(timesteps)+listToString(features)+".pk"
  190. if options.train:
  191. km.fit(xtrain)
  192. km.to_pickle(modelpath)
  193. else:
  194. km.from_pickle(modelpath)
  195. colorline=['violet','lightcoral','cyan','lime','grey']
  196. colordot=['darkviolet','red','blue','green','black']
  197. featuresToPlot=features
  198. indexesToPlot=[]
  199. for i in featuresToPlot:
  200. indexesToPlot.append(features.index(i))
  201. def plot(data,ranges):
  202. km.fit_predict(data)
  203. # Expand data to plot with the timesteps samples of last sample
  204. datatoplot=data[:,0,:]
  205. datatoplot=np.vstack((datatoplot,data[ranges[len(ranges)-1][1],:,:]))
  206. labels=[] # Labels are assigned randomly by classifer
  207. for i in range(len(ranges)):
  208. b=Counter(km.labels_[ranges[i][0]:ranges[i][1]])
  209. labels.append(b.most_common(1)[0][0])
  210. print("\n\n\n LABELS: ",labels,"\n\n")
  211. NumFeaturesToPlot=len(indexesToPlot)
  212. plt.rcParams.update({'font.size': 16})
  213. fig, axes = plt.subplots(
  214. nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
  215. )
  216. for i in range(NumFeaturesToPlot):
  217. init=0
  218. end=ranges[0][1]
  219. labelsplotted=[]
  220. for j in range(len(ranges)):
  221. if j==(len(ranges)-1): # Plot the last timesteps
  222. classtype=labels.index(labels[j])
  223. if classtype in labelsplotted:
  224. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  225. else:
  226. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  227. labelsplotted.append(classtype)
  228. else:
  229. classtype=labels.index(labels[j])
  230. if classtype in labelsplotted:
  231. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  232. else:
  233. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  234. labelsplotted.append(classtype)
  235. init=end
  236. if j<(len(ranges)-1):
  237. end+=(ranges[j+1][1]-ranges[j+1][0])
  238. x=[]
  239. y=[]
  240. for j in range(len(ranges)):
  241. x.append([])
  242. y.append([])
  243. for j in range(len(ranges)):
  244. for k in range(ranges[j][0],ranges[j][1]):
  245. try: # Idont know why sometimes fails index !!!!
  246. x[labels.index(km.labels_[k])].append(k+timesteps)
  247. y[labels.index(km.labels_[k])].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  248. except:
  249. x[0].append(k+timesteps)
  250. y[0].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  251. labelsplotted=[]
  252. for j in range(len(ranges)):
  253. classtype=labels.index(labels[j])
  254. if classtype in labelsplotted:
  255. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0)
  256. else:
  257. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0,label="Class type "+str(j) )
  258. labelsplotted.append(classtype)
  259. if i==(NumFeatures-1):
  260. axes[i].legend(loc='right')
  261. s=''
  262. s+=featureNames[features[indexesToPlot[i]]]
  263. s+=' '+unitNames[features[indexesToPlot[i]]]
  264. axes[i].set_ylabel(s)
  265. axes[i].grid()
  266. axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
  267. plt.show()
  268. '''
  269. Ranges=[]
  270. r=0
  271. for i in range(NumberOfFailures+1):
  272. Ranges.append([r,r+dataTrainNorm[i].shape[0]])
  273. r+=dataTrainNorm[i].shape[0]
  274. # Drop the last TIME_STEPS for plotting
  275. Ranges[NumberOfFailures][1]=Ranges[NumberOfFailures][1]-timesteps-1
  276. plot(xtrain,Ranges)
  277. '''
  278. # Try with test data
  279. X=dataTestNorm[0]
  280. Ranges=[[0,dataTestNorm[0].shape[0]]]
  281. r=dataTestNorm[0].shape[0]
  282. for i in range(1,NumberOfFailures+1):
  283. X=np.vstack((X,dataTestNorm[i]))
  284. Ranges.append([r,r+dataTestNorm[i].shape[0]])
  285. r+=dataTestNorm[i].shape[0]
  286. #X=np.vstack((X,dataTestNorm[0])) # We add a last segment of no fail data
  287. #Ranges.append([r,r+dataTestNorm[0].shape[0]])
  288. Ranges[len(Ranges)-1][1]=Ranges[len(Ranges)-1][1]-timesteps-1
  289. xtest=create_sequences(X,timesteps)
  290. def anomalyMetric(labels,ranges):
  291. # Takes ONLY the firsts segments of Ranges
  292. # FP, TP: false/true positive
  293. # TN, FN: true/false negative
  294. # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
  295. # Precision: Rate of positive results: TP/(TP+FP)
  296. # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
  297. print("Labels on test: ",set(labels))
  298. lab=[] # Labels are assigned randomly by classifer
  299. TP=[]
  300. FN=[]
  301. TPFP=[]
  302. ASSIGNED_CLASS=[]
  303. for i in range(NumberOfFailures+1):
  304. ASSIGNED_CLASS.append(-1)
  305. UNASSIGNED_CLASS=[]
  306. for i in range(NumberOfFailures+1):
  307. TP.append([])
  308. FN.append([])
  309. TPFP.append([])
  310. Class=Counter(labels[ranges[i][0]:ranges[i][1]]).most_common(1)[0][0]
  311. if not Class in ASSIGNED_CLASS:
  312. ASSIGNED_CLASS[i]=Class
  313. for i in range(NumberOfFailures+1):
  314. if not i in ASSIGNED_CLASS:
  315. UNASSIGNED_CLASS.append(i)
  316. for i in range(NumberOfFailures+1):
  317. if ASSIGNED_CLASS[i]==-1:
  318. ASSIGNED_CLASS[i]=UNASSIGNED_CLASS.pop(0)
  319. for i in range(NumberOfFailures+1):
  320. lab.append(ASSIGNED_CLASS[i])
  321. for i in range(NumberOfFailures+1):
  322. counttp=0
  323. countfn=0
  324. for j in range(ranges[i][0],ranges[i][1]-timesteps):
  325. if lab.index(labels[j])==i:
  326. counttp+=1
  327. else:
  328. countfn+=1
  329. TP[i]=counttp
  330. FN[i]=countfn
  331. for i in range(NumberOfFailures+1):
  332. count=0
  333. for ii in range(NumberOfFailures+1):
  334. for j in range(ranges[ii][0],ranges[ii][1]-timesteps):
  335. if lab.index(labels[j])==i:
  336. count+=1
  337. TPFP[i]=count
  338. segmentLength=[]
  339. for i in range(NumberOfFailures+1):
  340. segmentLength.append(ranges[i][1]-timesteps-ranges[i][0])
  341. totalSegmentLength=0
  342. for i in range(NumberOfFailures+1):
  343. totalSegmentLength+=segmentLength[i]
  344. Sensitivity=0
  345. Precision=0
  346. for i in range(NumberOfFailures+1):
  347. Sensitivity+=TP[i]/(TP[i]+FN[i])*segmentLength[i]/totalSegmentLength
  348. Precision+=TP[i]/(TPFP[i])*segmentLength[i]/totalSegmentLength
  349. print(lab)
  350. print("TP: ",TP)
  351. print("FN: ",FN)
  352. print("TPFP: ",TPFP)
  353. print("Sensitivity: ",Sensitivity)
  354. print("Precision: ",Precision)
  355. print("F1-Score: ",2*Precision*Sensitivity/(Sensitivity+Precision))
  356. km.fit_predict(xtest)
  357. anomalyMetric(km.labels_,Ranges)
  358. plot(xtest,Ranges)

Powered by TurnKey Linux.