Geen omschrijving

v1_multifailure.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. # Csar Fdez, UdL, 2025
  2. import pandas as pd
  3. import matplotlib.pyplot as plt
  4. import datetime
  5. import numpy as np
  6. import keras
  7. import os.path
  8. import pickle
  9. from keras import layers
  10. from optparse import OptionParser
  11. parser = OptionParser()
  12. parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
  13. (options, args) = parser.parse_args()
  14. # data files arrays. Index:
  15. # 0. No failure
  16. # 1. Blocked evaporator
  17. # 2. Full Blocked condenser
  18. # 3. Partial Blocked condenser
  19. # 4 Fan condenser not working
  20. # 5. Open door
  21. NumberOfFailures=5
  22. NumberOfFailures=4 # So far, we have only data for the first 4 types of failures
  23. datafiles=[]
  24. for i in range(NumberOfFailures+1):
  25. datafiles.append([])
  26. # Next set of ddata corresponds to Freezer, SP=-26
  27. datafiles[0]=['2024-08-07_5_','2024-08-08_5_']
  28. datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
  29. datafiles[2]=['2024-12-18_5_','2024-12-19_5_']
  30. datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
  31. datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
  32. #datafiles[4]=[]
  33. # Features suggested by Xavier
  34. # Care with 'tc s3' because on datafiles[0] is always nulll
  35. # Seems to be incoropored in new tests
  36. features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
  37. features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
  38. #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
  39. NumFeatures=len(features)
  40. df_list=[]
  41. for i in range(NumberOfFailures+1):
  42. df_list.append([])
  43. for i in range(NumberOfFailures+1):
  44. dftemp=[]
  45. for f in datafiles[i]:
  46. print(" ", f)
  47. #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
  48. df1 = pd.read_csv('./data/'+f+'.csv')
  49. dftemp.append(df1)
  50. df_list[i]=pd.concat(dftemp)
  51. # subsampled to 5' = 30 * 10"
  52. # We consider smaples every 5' because in production, we will only have data at this frequency
  53. subsamplingrate=30
  54. dataframe=[]
  55. for i in range(NumberOfFailures+1):
  56. dataframe.append([])
  57. for i in range(NumberOfFailures+1):
  58. datalength=df_list[i].shape[0]
  59. dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
  60. dataframe[i].reset_index(inplace=True,drop=True)
  61. dataframe[i].dropna(inplace=True)
  62. # Train data is first 2/3 of data
  63. # Test data is: last 1/3 of data
  64. dataTrain=[]
  65. dataTest=[]
  66. for i in range(NumberOfFailures+1):
  67. dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
  68. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
  69. def normalize2(train,test):
  70. # merges train and test
  71. means=[]
  72. stdevs=[]
  73. for i in range(NumFeatures):
  74. means.append(train[:,i].mean())
  75. stdevs.append(train[:,i].std())
  76. return( (train-means)/stdevs, (test-means)/stdevs )
  77. dataTrainNorm=[]
  78. dataTestNorm=[]
  79. for i in range(NumberOfFailures+1):
  80. dataTrainNorm.append([])
  81. dataTestNorm.append([])
  82. for i in range(NumberOfFailures+1):
  83. (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
  84. def plotData():
  85. fig, axes = plt.subplots(
  86. nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  87. )
  88. for i in range(NumberOfFailures+1):
  89. axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
  90. axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
  91. #axes[1].legend()
  92. #axes[0].set_ylabel(features[0])
  93. #axes[1].set_ylabel(features[1])
  94. #plt.show()
  95. #plotData()
  96. TIME_STEPS = 12
  97. def create_sequences(values, time_steps=TIME_STEPS):
  98. output = []
  99. for i in range(len(values) - time_steps + 1):
  100. output.append(values[i : (i + time_steps)])
  101. return np.stack(output)
  102. x_train=[]
  103. for i in range(NumberOfFailures+1):
  104. x_train.append(create_sequences(dataTrainNorm[i]))
  105. model=[]
  106. modelckpt_callback =[]
  107. es_callback =[]
  108. path_checkpoint=[]
  109. for i in range(NumberOfFailures+1):
  110. model.append([])
  111. model[i] = keras.Sequential(
  112. [
  113. layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])),
  114. layers.Conv1D(
  115. filters=64,
  116. kernel_size=7,
  117. padding="same",
  118. strides=2,
  119. activation="relu",
  120. ),
  121. layers.Dropout(rate=0.2),
  122. layers.Conv1D(
  123. filters=32,
  124. kernel_size=7,
  125. padding="same",
  126. strides=2,
  127. activation="relu",
  128. ),
  129. layers.Conv1DTranspose(
  130. filters=32,
  131. kernel_size=7,
  132. padding="same",
  133. strides=2,
  134. activation="relu",
  135. ),
  136. layers.Dropout(rate=0.2),
  137. layers.Conv1DTranspose(
  138. filters=64,
  139. kernel_size=7,
  140. padding="same",
  141. strides=2,
  142. activation="relu",
  143. ),
  144. layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=7, padding="same"),
  145. ]
  146. )
  147. model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
  148. model[i].summary()
  149. path_checkpoint.append("model_v1_"+str(i)+"._checkpoint.weights.h5")
  150. es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15))
  151. modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,))
  152. if options.train:
  153. history=[]
  154. for i in range(NumberOfFailures+1):
  155. history.append(model[i].fit( x_train[i], x_train[i], epochs=400, batch_size=128, validation_split=0.3, callbacks=[ es_callback[i], modelckpt_callback[i] ],))
  156. fig, axes = plt.subplots(
  157. nrows=int(np.ceil((NumberOfFailures+1)/2)), ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  158. )
  159. for i in range(int(np.ceil((NumberOfFailures+1)/2))):
  160. for j in range(2):
  161. r=2*i+j
  162. if r < NumberOfFailures+1:
  163. axes[i][j].plot(history[r].history["loss"], label="Training Loss")
  164. axes[i][j].plot(history[r].history["val_loss"], label="Val Loss")
  165. axes[i][j].legend()
  166. #plt.show()
  167. else:
  168. for i in range(NumberOfFailures+1):
  169. model[i].load_weights(path_checkpoint[i])
  170. x_train_pred=[]
  171. train_mae_loss=[]
  172. threshold=[]
  173. for i in range(NumberOfFailures+1):
  174. x_train_pred.append(model[i].predict(x_train[i]))
  175. train_mae_loss.append(np.mean(np.abs(x_train_pred[i] - x_train[i]), axis=1))
  176. threshold.append(np.max(train_mae_loss[i],axis=0))
  177. print("Threshold : ",threshold)
  178. for i in range(NumberOfFailures+1):
  179. threshold[i]=threshold[i]*1.3
  180. # Threshold is enlarged because, otherwise, for subsamples at 5' have many false positives
  181. # 1st scenario. Detect only anomaly. Later, we will classiffy it
  182. # Test data= testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
  183. d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4],dataTestNorm[0]))
  184. x_test = create_sequences(d)
  185. x_test_pred = model[0].predict(x_test)
  186. test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
  187. # Define ranges for plotting in different colors
  188. testRanges=[]
  189. r=dataTestNorm[0].shape[0]
  190. testRanges.append([0,r])
  191. for i in range(1,NumberOfFailures+1):
  192. rnext=r+dataTestNorm[i].shape[0]
  193. testRanges.append([r,rnext] )
  194. r=rnext
  195. testRanges.append([r, x_test.shape[0] ])
  196. def AtLeastOneTrue(x):
  197. for i in range(NumFeatures):
  198. if x[i]:
  199. return True
  200. return False
  201. anomalies = test_mae_loss > threshold[0]
  202. anomalous_data_indices = []
  203. for i in range(anomalies.shape[0]):
  204. if AtLeastOneTrue(anomalies[i]):
  205. #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
  206. anomalous_data_indices.append(i)
  207. #print(anomalous_data_indices)
  208. # Let's plot only a couple of features
  209. def plotData2():
  210. fig, axes = plt.subplots(
  211. nrows=2, ncols=1, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  212. )
  213. axes[0].plot(range(len(x_train[0])),x_train[0][:,0,0],label="normal")
  214. axes[0].plot(range(len(x_train[0]),len(x_train[0])+len(x_test)),x_test[:,0,0],label="abnormal")
  215. axes[0].plot(len(x_train[0])+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,0],color='red',marker='.',linewidth=0,label="abnormal detection")
  216. axes[0].legend()
  217. axes[1].plot(range(len(x_train[0])),x_train[0][:,0,1],label="normal")
  218. axes[1].plot(range(len(x_train[0]),len(x_train[0])+len(x_test)),x_test[:,0,1],label="abnormal")
  219. axes[1].plot(len(x_train[0])+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,1],color='red',marker='.',linewidth=0,label="abnormal detection")
  220. axes[1].legend()
  221. axes[0].set_ylabel(features[0])
  222. axes[1].set_ylabel(features[1])
  223. plt.show()
  224. #plotData2()
  225. # 2nd scenario. Go over anomalies and classify it by less error
  226. '''
  227. #This code works, but too slow
  228. anomalous_data_type=[]
  229. for i in anomalous_data_indices:
  230. error=[]
  231. for m in range(1,NumberOfFailures+1):
  232. error.append(np.mean(np.mean(np.abs(model[m].predict(x_test[i:i+1,:,:])-x_test[i:i+1,:,:]),axis=1)))
  233. anomalous_data_type.append(np.argmin(error)+1)
  234. '''
  235. anomalous_data_type=[]
  236. x_test_predict=[]
  237. for m in range(NumberOfFailures+1):
  238. x_test_predict.append(model[m].predict(x_test))
  239. for i in anomalous_data_indices:
  240. error=[]
  241. for m in range(1,NumberOfFailures+1):
  242. error.append(np.mean(np.mean(np.abs(x_test_predict[m][i:i+1,:,:]-x_test[i:i+1,:,:]),axis=1)))
  243. anomalous_data_type.append(np.argmin(error)+1)
  244. # For plotting purposes
  245. anomalous_data_indices_by_failure=[]
  246. for i in range(NumberOfFailures+1):
  247. anomalous_data_indices_by_failure.append([])
  248. for i in range(len(anomalous_data_indices)):
  249. print(i," ",anomalous_data_type[i])
  250. anomalous_data_indices_by_failure[anomalous_data_type[i]].append(anomalous_data_indices[i])
  251. colorline=['violet','lightcoral','cyan','lime','grey']
  252. colordot=['darkviolet','red','blue','green','black']
  253. featuresToPlot=['r1 s1','r1 s3','r1 s5','r2 s3','r2 s4','pa1 apiii','tc s1','tc s2','tc s3']
  254. featuresToPlot=features
  255. indexesToPlot=[]
  256. for i in featuresToPlot:
  257. indexesToPlot.append(features.index(i))
  258. def plotData3():
  259. NumFeaturesToPlot=len(indexesToPlot)
  260. fig, axes = plt.subplots(
  261. nrows=NumFeaturesToPlot, ncols=1, figsize=(25, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  262. )
  263. for i in range(NumFeaturesToPlot):
  264. init=0
  265. end=len(x_train[0])
  266. axes[i].plot(range(init,end),x_train[0][:,0,indexesToPlot[i]],label="normal train")
  267. #axes.plot(range(len(x_train[0]),len(x_train[0])+len(x_test)),x_test[:,0,0],label="abnormal")
  268. init=end
  269. end+=testRanges[0][1]
  270. axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],label="normal test")
  271. init=end
  272. end+=(testRanges[1][1]-testRanges[1][0])
  273. for j in range(1,NumberOfFailures+1):
  274. axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]],label="fail type "+str(j), color=colorline[j-1])
  275. init=end
  276. end+=(testRanges[j+1][1]-testRanges[j+1][0])
  277. axes[i].plot(len(x_train[0])+np.array(anomalous_data_indices_by_failure[j]),x_test[anomalous_data_indices_by_failure[j],0,indexesToPlot[i]],color=colordot[j-1],marker='.',linewidth=0,label="abnormal detection type "+str(j))
  278. init=end-(testRanges[NumberOfFailures+1][1]-testRanges[NumberOfFailures+1][0])
  279. end=init+(testRanges[0][1]-testRanges[0][0])
  280. axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],color='orange')
  281. if i==0:
  282. axes[i].legend(bbox_to_anchor=(1, 0.5))
  283. axes[i].set_ylabel(features[indexesToPlot[i]])
  284. axes[i].grid()
  285. plt.show()
  286. def anomalyMetric(testList): # first of list is non failure data
  287. # FP, TP: false/true positive
  288. # TN, FN: true/false negative
  289. # Sensitivity: probab of fail detection if data is fail
  290. # Specificity: prob of no fail detection if data is well
  291. x_test = create_sequences(testList[0])
  292. x_test_pred = model[0].predict(x_test)
  293. test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
  294. anomalies = test_mae_loss > threshold[0]
  295. count=0
  296. for i in range(anomalies.shape[0]):
  297. if AtLeastOneTrue(anomalies[i]):
  298. count+=1
  299. FP=count
  300. TN=anomalies.shape[0]-1
  301. count=0
  302. TP=np.zeros((NumberOfFailures))
  303. FN=np.zeros((NumberOfFailures))
  304. for i in range(1,len(testList)):
  305. x_test = create_sequences(testList[i])
  306. x_test_pred = model[0].predict(x_test)
  307. test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
  308. anomalies = test_mae_loss > threshold[0]
  309. count=0
  310. for j in range(anomalies.shape[0]):
  311. if AtLeastOneTrue(anomalies[j]):
  312. count+=1
  313. TP[i-1] = count
  314. FN[i-1] = anomalies.shape[0]-count
  315. Sensitivity=TP.sum()/(TP.sum()+FN.sum())
  316. Specifity=TN/(TN+FP)
  317. print("Sensitivity: ",Sensitivity)
  318. print("Specifity: ",Specifity)
  319. return Sensitivity+Specifity
  320. anomalyMetric([dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]])
  321. plotData3()

Powered by TurnKey Linux.