Nav apraksta

v2_unsupervised.py 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. # Csar Fdez, UdL, 2025
  2. # Unsupervised classification. Uses tslearn
  3. # https://tslearn.readthedocs.io/en/stable/index.html
  4. # Be careful with v0_unsupervised and all versions for supervised.
  5. # because dataTrain is not stacke before create_sequences, so,
  6. # the sets are not aligned in time
  7. # Same as v1 but changing data
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. import datetime
  11. import numpy as np
  12. import os.path
  13. from optparse import OptionParser
  14. import copy
  15. import pickle
  16. from tslearn.clustering import TimeSeriesKMeans
  17. from tslearn.neighbors import KNeighborsTimeSeries
  18. from collections import Counter
  19. parser = OptionParser()
  20. parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
  21. parser.add_option("-p", "--plot", dest="plot", help="Plot Data (false)", default=False, action="store_true")
  22. parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
  23. (options, args) = parser.parse_args()
  24. # data files arrays. Index:
  25. # 0. No failure
  26. # 1. Blocked evaporator
  27. # 2. Full Blocked condenser
  28. # 3 Fan condenser not working
  29. # 4. Open door
  30. NumberOfFailures=4
  31. datafiles={}
  32. listofFacilitySetpoint=['5-26','5-18','5-22','30','32','34']
  33. for j in listofFacilitySetpoint:
  34. datafiles[j]=[]
  35. for i in range(NumberOfFailures+1):
  36. datafiles[j].append([])
  37. # Freezer, SP=-26
  38. datafiles['5-26'][0]=['2025-01-25_5_','2025-01-26_5_','2025-01-29_5_','2025-01-30_5_','2025-01-31_5_','2025-02-01_5_','2025-02-02_5_','2025-02-03_5_','2025-02-04_5_']
  39. datafiles['5-26'][1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
  40. datafiles['5-26'][2]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
  41. datafiles['5-26'][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
  42. datafiles['5-26'][4]=['2025-02-13_5_','2025-02-14_5_','2025-02-15_5_','2025-02-16_5_','2025-02-17_5_','2025-02-18_5_','2025-02-19_5_']
  43. # Freezer, SP=-18
  44. datafiles['5-18'][0]=['2025-01-21_5_','2025-01-22_5_','2025-01-23_5_'] #
  45. datafiles['5-18'][1]=['2025-02-17_5_','2025-02-18_5_','2025-02-19_5_'] #
  46. datafiles['5-18'][2]=['2025-03-10_5_','2025-03-11_5_','2025-03-12_5_'] #
  47. datafiles['5-18'][3]=['2025-01-04_5_','2025-01-05_5_','2025-01-06_5_','2025-01-07_5_'] #
  48. datafiles['5-18'][4]=['2025-04-30_5_','2025-05-01_5_','2025-05-02_5_','2025-05-03_5_','2025-05-04_5_','2025-05-05_5_'] #
  49. # Freezer, SP=-22
  50. datafiles['5-22'][0]=['2025-03-13_5_','2025-03-14_5_','2025-03-15_5_','2025-03-16_5_']
  51. datafiles['5-22'][1]=['2025-03-21_5_','2025-03-22_5_','2025-03-23_5_','2025-03-24_5_','2025-03-25_5_'] #
  52. datafiles['5-22'][2]=['2025-03-26_5_','2025-03-27_5_','2025-03-28_5_']
  53. datafiles['5-22'][3]=['2025-03-31_5_','2025-04-01_5_','2025-04-02_5_','2025-04-03_5_']
  54. datafiles['5-22'][4]=['2025-03-17_5_']
  55. # Refrigerator 0
  56. datafiles['30'][0]=['2025-01-21_3_','2025-01-22_3_','2025-01-23_3_','2025-01-24_3_','2025-01-25_3_','2025-01-26_3_']
  57. datafiles['30'][1]=['2024-12-11_3_','2024-12-12_3_','2024-12-13_3_','2024-12-14_3_','2024-12-15_3_']
  58. datafiles['30'][2]=['2024-12-18_3_','2024-12-19_3_','2024-12-20_3_']
  59. datafiles['30'][3]=['2024-12-28_3_','2024-12-29_3_','2024-12-30_3_','2024-12-31_3_','2025-01-01_3_']
  60. #datafiles['30'][4]=['2025-02-12_3_','2025-02-13_3_','2025-02-14_3_','2025-02-15_3_','2025-02-16_3_','2025-02-17_3_','2025-02-18_3_','2025-02-19_3_'] # es solapa amb ventilador no funcionant. i els dies 20 i 21 no hi son
  61. datafiles['30'][4]=['2025-05-08_3_','2025-05-09_3_','2025-05-10_3_','2025-05-11_3_','2025-05-12_3_']
  62. # Refrigerator 2
  63. datafiles['32'][0]=['2025-03-13_3_','2025-03-14_3_','2025-03-15_3_','2025-03-16_3_']
  64. datafiles['32'][1]=['2025-03-10_3_']
  65. datafiles['32'][2]=['2025-03-17_3_']
  66. datafiles['32'][3]=['2025-03-24_3_','2025-03-25_3_','2025-03-26_3_']
  67. datafiles['32'][4]=['2025-03-27_3_','2025-03-28_3_']
  68. # Refrigerator 4
  69. datafiles['34'][0]=['2025-03-31_3_','2025-04-01_3_','2025-04-02_3_','2025-04-03_3_']
  70. datafiles['34'][1]=['2025-04-25_3_','2025-04-26_3_','2025-04-27_3_','2025-04-28_3_'] # aquestes dades no hi son
  71. # diuen: que amb aquest set no obtenen gel i aquest experiment es pot descartar ????
  72. datafiles['34'][2]=['2025-04-11_3_','2025-04-12_3_','2025-04-13_3_','2025-04-14_3_']
  73. datafiles['34'][3]=['2025-04-30_3_','2025-05-01_3_','2025-05-02_3_','2025-05-03_3_','2025-05-04_3_','2025-05-05_3_']
  74. datafiles['34'][4]=['2025-04-23_3_','2025-04-24_3_','2025-04-25_3_']
  75. # data files arrays. Index:
  76. # 0. No failure
  77. # 1. Blocked evaporator
  78. # 2. Full Blocked condenser
  79. # 3 Fan condenser not working
  80. # 4. Open door
  81. facilitySetpoint='5-18'
  82. # Features suggested by Xavier
  83. # Care with 'tc s3' because on datafiles[0] is always nulll
  84. # Seems to be incoropored in new tests
  85. #r1s5 supply air flow temperature
  86. #r1s1 inlet evaporator temperature
  87. #r1s4 condenser outlet
  88. # VAriables r1s4 and pa1 apiii may not exists in cloud controlers
  89. features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
  90. #features=['r1 s1','r1 s4','r1 s5']
  91. featureNames={}
  92. featureNames['r1 s1']='$T_{evap}$'
  93. featureNames['r1 s4']='$T_{cond}$'
  94. featureNames['r1 s5']='$T_{air}$'
  95. featureNames['pa1 apiii']='$P_{elec}$'
  96. unitNames={}
  97. unitNames['r1 s1']='$(^{o}C)$'
  98. unitNames['r1 s4']='$(^{o}C)$'
  99. unitNames['r1 s5']='$(^{o}C)$'
  100. unitNames['pa1 apiii']='$(W)$'
  101. #features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
  102. #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
  103. NumFeatures=len(features)
  104. df_list=[]
  105. for i in range(NumberOfFailures+1):
  106. df_list.append([])
  107. for i in range(NumberOfFailures+1):
  108. dftemp=[]
  109. for f in datafiles[facilitySetpoint][i]:
  110. print(" ", f)
  111. #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
  112. df1 = pd.read_csv('./data/'+f+'.csv')
  113. dftemp.append(df1)
  114. df_list[i]=pd.concat(dftemp)
  115. # subsampled to 5' = 30 * 10"
  116. # We consider smaples every 5' because in production, we will only have data at this frequency
  117. subsamplingrate=30
  118. dataframe=[]
  119. for i in range(NumberOfFailures+1):
  120. dataframe.append([])
  121. for i in range(NumberOfFailures+1):
  122. datalength=df_list[i].shape[0]
  123. dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
  124. dataframe[i].reset_index(inplace=True,drop=True)
  125. dataframe[i].dropna(inplace=True)
  126. # Train data is first 2/3 of data
  127. # Test data is: last 1/3 of data
  128. dataTrain=[]
  129. dataTest=[]
  130. NumberOfSamplesForTest=0
  131. for i in range(NumberOfFailures+1):
  132. dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
  133. if NumberOfSamplesForTest==0: # Take all
  134. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
  135. else:
  136. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):int(dataframe[i].shape[0]*2/3)+NumberOfSamplesForTest,:])
  137. # Calculate means and stdev
  138. a=dataTrain[0]
  139. for i in range(1,NumberOfFailures+1):
  140. a=np.vstack((a,dataTrain[i]))
  141. means=a.mean(axis=0)
  142. stdevs=a.std(axis=0)
  143. def normalize2(train,test):
  144. return( (train-means)/stdevs, (test-means)/stdevs )
  145. dataTrainNorm=[]
  146. dataTestNorm=[]
  147. for i in range(NumberOfFailures+1):
  148. dataTrainNorm.append([])
  149. dataTestNorm.append([])
  150. for i in range(NumberOfFailures+1):
  151. (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
  152. def plotData():
  153. fig, axes = plt.subplots(
  154. nrows=NumberOfFailures+1, ncols=NumFeatures, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  155. )
  156. for i in range(NumberOfFailures+1):
  157. for j in range(NumFeatures):
  158. axes[i][j].plot(np.concatenate((dataTrainNorm[i][:,j],dataTestNorm[i][:,j])),label="Fail "+str(i)+", feature 0")
  159. #axes[1].legend()
  160. #axes[0].set_ylabel(features[0])
  161. #axes[1].set_ylabel(features[1])
  162. plt.show()
  163. if options.plot:
  164. plotData()
  165. exit()
  166. def create_sequences(values, time_steps):
  167. output = []
  168. for i in range(len(values) - time_steps ):
  169. output.append(values[i : (i + time_steps)])
  170. return np.stack(output)
  171. def listToString(l):
  172. r=''
  173. for i in l:
  174. r+=str(i)
  175. return(r.replace(' ',''))
  176. timesteps=int(options.timesteps)
  177. X=dataTrainNorm[0]
  178. for i in range(1,NumberOfFailures+1):
  179. X=np.vstack((X,dataTrainNorm[i]))
  180. xtrain=create_sequences(X,timesteps)
  181. km = TimeSeriesKMeans(n_clusters=NumberOfFailures+1, metric="dtw", random_state=0)
  182. modelpath="model_v2_unsupervised_"+facilitySetpoint+"_"+str(timesteps)+listToString(features)+".pk"
  183. if options.train:
  184. km.fit(xtrain)
  185. km.to_pickle(modelpath)
  186. else:
  187. km.from_pickle(modelpath)
  188. #km.fit_predict(xtrain)
  189. colorline=['violet','lightcoral','cyan','lime','grey']
  190. colordot=['darkviolet','red','blue','green','black']
  191. featuresToPlot=features
  192. indexesToPlot=[]
  193. for i in featuresToPlot:
  194. indexesToPlot.append(features.index(i))
  195. def plot(data,ranges):
  196. km.fit_predict(data)
  197. # Expand data to plot with the timesteps samples of last sample
  198. datatoplot=data[:,0,:]
  199. datatoplot=np.vstack((datatoplot,data[ranges[len(ranges)-1][1],:,:]))
  200. labels=[] # Labels are assigned randomly by classifer
  201. for i in range(len(ranges)):
  202. b=Counter(km.labels_[ranges[i][0]:ranges[i][1]])
  203. labels.append(b.most_common(1)[0][0])
  204. print("\n\n\n LABELS: ",labels,"\n\n")
  205. NumFeaturesToPlot=len(indexesToPlot)
  206. plt.rcParams.update({'font.size': 16})
  207. fig, axes = plt.subplots(
  208. nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
  209. )
  210. for i in range(NumFeaturesToPlot):
  211. init=0
  212. end=ranges[0][1]
  213. labelsplotted=[]
  214. for j in range(len(ranges)):
  215. if j==(len(ranges)-1): # Plot the last timesteps
  216. classtype=labels.index(labels[j])
  217. if classtype in labelsplotted:
  218. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  219. else:
  220. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  221. labelsplotted.append(classtype)
  222. else:
  223. classtype=labels.index(labels[j])
  224. if classtype in labelsplotted:
  225. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  226. else:
  227. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  228. labelsplotted.append(classtype)
  229. init=end
  230. if j<(len(ranges)-1):
  231. end+=(ranges[j+1][1]-ranges[j+1][0])
  232. x=[]
  233. y=[]
  234. for j in range(len(ranges)):
  235. x.append([])
  236. y.append([])
  237. for j in range(len(ranges)):
  238. for k in range(ranges[j][0],ranges[j][1]):
  239. try: # Idont know why sometimes fails index !!!!
  240. x[labels.index(km.labels_[k])].append(k+timesteps)
  241. y[labels.index(km.labels_[k])].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  242. except:
  243. x[0].append(k+timesteps)
  244. y[0].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  245. labelsplotted=[]
  246. for j in range(len(ranges)):
  247. classtype=labels.index(labels[j])
  248. if classtype in labelsplotted:
  249. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0)
  250. else:
  251. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0,label="Class type "+str(j) )
  252. labelsplotted.append(classtype)
  253. if i==(NumFeatures-1):
  254. axes[i].legend(loc='right')
  255. s=''
  256. s+=featureNames[features[indexesToPlot[i]]]
  257. s+=' '+unitNames[features[indexesToPlot[i]]]
  258. axes[i].set_ylabel(s)
  259. axes[i].grid()
  260. axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
  261. plt.show()
  262. '''
  263. Ranges=[]
  264. r=0
  265. for i in range(NumberOfFailures+1):
  266. Ranges.append([r,r+dataTrainNorm[i].shape[0]])
  267. r+=dataTrainNorm[i].shape[0]
  268. # Drop the last TIME_STEPS for plotting
  269. Ranges[NumberOfFailures][1]=Ranges[NumberOfFailures][1]-timesteps-1
  270. plot(xtrain,Ranges)
  271. '''
  272. # Try with test data
  273. X=dataTestNorm[0]
  274. Ranges=[[0,dataTestNorm[0].shape[0]]]
  275. r=dataTestNorm[0].shape[0]
  276. for i in range(1,NumberOfFailures+1):
  277. X=np.vstack((X,dataTestNorm[i]))
  278. Ranges.append([r,r+dataTestNorm[i].shape[0]])
  279. r+=dataTestNorm[i].shape[0]
  280. #X=np.vstack((X,dataTestNorm[0])) # We add a last segment of no fail data
  281. #Ranges.append([r,r+dataTestNorm[0].shape[0]])
  282. Ranges[len(Ranges)-1][1]=Ranges[len(Ranges)-1][1]-timesteps-1
  283. xtest=create_sequences(X,timesteps)
  284. def anomalyMetric(labels,ranges):
  285. # Takes ONLY the firsts segments of Ranges
  286. # FP, TP: false/true positive
  287. # TN, FN: true/false negative
  288. # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
  289. # Precision: Rate of positive results: TP/(TP+FP)
  290. # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
  291. lab=[] # Labels are assigned randomly by classifer
  292. TP=[]
  293. FN=[]
  294. TPFP=[]
  295. for i in range(NumberOfFailures+1):
  296. TP.append([])
  297. FN.append([])
  298. TPFP.append([])
  299. b=Counter(labels[ranges[i][0]:ranges[i][1]])
  300. lab.append(b.most_common(1)[0][0])
  301. for i in range(NumberOfFailures+1):
  302. counttp=0
  303. countfn=0
  304. for j in range(ranges[i][0],ranges[i][1]-timesteps):
  305. if lab.index(labels[j])==i:
  306. counttp+=1
  307. else:
  308. countfn+=1
  309. TP[i]=counttp
  310. FN[i]=countfn
  311. for i in range(NumberOfFailures+1):
  312. count=0
  313. for ii in range(NumberOfFailures+1):
  314. for j in range(ranges[ii][0],ranges[ii][1]-timesteps):
  315. if lab.index(labels[j])==i:
  316. count+=1
  317. TPFP[i]=count
  318. segmentLength=[]
  319. for i in range(NumberOfFailures+1):
  320. segmentLength.append(ranges[i][1]-timesteps-ranges[i][0])
  321. totalSegmentLength=0
  322. for i in range(NumberOfFailures+1):
  323. totalSegmentLength+=segmentLength[i]
  324. Sensitivity=0
  325. Precision=0
  326. for i in range(NumberOfFailures+1):
  327. Sensitivity+=TP[i]/(TP[i]+FN[i])*segmentLength[i]/totalSegmentLength
  328. Precision+=TP[i]/(TPFP[i])*segmentLength[i]/totalSegmentLength
  329. print(lab)
  330. print("TP: ",TP)
  331. print("FN: ",FN)
  332. print("TPFP: ",TPFP)
  333. print("Sensitivity: ",Sensitivity)
  334. print("Precision: ",Precision)
  335. print("F1-Score: ",2*Precision*Sensitivity/(Sensitivity+Precision))
  336. km.fit_predict(xtest)
  337. anomalyMetric(km.labels_,Ranges)
  338. plot(xtest,Ranges)

Powered by TurnKey Linux.