Ingen beskrivning

v1_unsupervised.py 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. # Csar Fdez, UdL, 2025
  2. # Unsupervised classification. Uses tslearn
  3. # https://tslearn.readthedocs.io/en/stable/index.html
  4. # Be careful with v0_unsupervised and all versions for supervised.
  5. # because dataTrain is not stacke before create_sequences, so,
  6. # the sets are not aligned in time
  7. import pandas as pd
  8. import matplotlib.pyplot as plt
  9. import datetime
  10. import numpy as np
  11. import os.path
  12. from optparse import OptionParser
  13. import copy
  14. import pickle
  15. from tslearn.clustering import TimeSeriesKMeans
  16. from collections import Counter
  17. parser = OptionParser()
  18. parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
  19. parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
  20. (options, args) = parser.parse_args()
  21. # data files arrays. Index:
  22. # 0. No failure
  23. # 1. Blocked evaporator
  24. # 2. Full Blocked condenser
  25. # 3. Partial Blocked condenser
  26. # 4 Fan condenser not working
  27. # 5. Open door
  28. NumberOfFailures=4 # So far, we have only data for the first 4 types of failures
  29. datafiles=[]
  30. for i in range(NumberOfFailures+1):
  31. datafiles.append([])
  32. # Next set of ddata corresponds to Freezer, SP=-26
  33. datafiles[0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_','2025-01-27_5_','2025-01-28_5_']
  34. datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
  35. #datafiles[1]=['2024-12-17_5_','2024-12-16_5_','2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] # This have transitions
  36. datafiles[2]=['2024-12-18_5_','2024-12-19_5_']
  37. datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
  38. datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
  39. #datafiles[4]=['2024-12-27_5_','2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_'] # This have transitions
  40. #datafiles[4]=[]
  41. # Features suggested by Xavier
  42. # Care with 'tc s3' because on datafiles[0] is always nulll
  43. # Seems to be incoropored in new tests
  44. #r1s5 supply air flow temperature
  45. #r1s1 inlet evaporator temperature
  46. #r1s4 condenser outlet
  47. # VAriables r1s4 and pa1 apiii may not exists in cloud controlers
  48. features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
  49. features=['r1 s1','r1 s4','r1 s5']
  50. featureNames={}
  51. featureNames['r1 s1']='$T_{evap}$'
  52. featureNames['r1 s4']='$T_{cond}$'
  53. featureNames['r1 s5']='$T_{air}$'
  54. featureNames['pa1 apiii']='$P_{elec}$'
  55. unitNames={}
  56. unitNames['r1 s1']='$(^{o}C)$'
  57. unitNames['r1 s4']='$(^{o}C)$'
  58. unitNames['r1 s5']='$(^{o}C)$'
  59. unitNames['pa1 apiii']='$(W)$'
  60. #features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
  61. #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
  62. NumFeatures=len(features)
  63. df_list=[]
  64. for i in range(NumberOfFailures+1):
  65. df_list.append([])
  66. for i in range(NumberOfFailures+1):
  67. dftemp=[]
  68. for f in datafiles[i]:
  69. print(" ", f)
  70. #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
  71. df1 = pd.read_csv('./data/'+f+'.csv')
  72. dftemp.append(df1)
  73. df_list[i]=pd.concat(dftemp)
  74. # subsampled to 5' = 30 * 10"
  75. # We consider smaples every 5' because in production, we will only have data at this frequency
  76. subsamplingrate=30
  77. dataframe=[]
  78. for i in range(NumberOfFailures+1):
  79. dataframe.append([])
  80. for i in range(NumberOfFailures+1):
  81. datalength=df_list[i].shape[0]
  82. dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
  83. dataframe[i].reset_index(inplace=True,drop=True)
  84. dataframe[i].dropna(inplace=True)
  85. # Train data is first 2/3 of data
  86. # Test data is: last 1/3 of data
  87. dataTrain=[]
  88. dataTest=[]
  89. for i in range(NumberOfFailures+1):
  90. dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
  91. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
  92. # Calculate means and stdev
  93. a=dataTrain[0]
  94. for i in range(1,NumberOfFailures+1):
  95. a=np.vstack((a,dataTrain[i]))
  96. means=a.mean(axis=0)
  97. stdevs=a.std(axis=0)
  98. def normalize2(train,test):
  99. return( (train-means)/stdevs, (test-means)/stdevs )
  100. dataTrainNorm=[]
  101. dataTestNorm=[]
  102. for i in range(NumberOfFailures+1):
  103. dataTrainNorm.append([])
  104. dataTestNorm.append([])
  105. for i in range(NumberOfFailures+1):
  106. (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
  107. def plotData():
  108. fig, axes = plt.subplots(
  109. nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  110. )
  111. for i in range(NumberOfFailures+1):
  112. axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
  113. axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
  114. #axes[1].legend()
  115. #axes[0].set_ylabel(features[0])
  116. #axes[1].set_ylabel(features[1])
  117. plt.show()
  118. #plotData()
  119. def create_sequences(values, time_steps):
  120. output = []
  121. for i in range(len(values) - time_steps ):
  122. output.append(values[i : (i + time_steps)])
  123. return np.stack(output)
  124. def listToString(l):
  125. r=''
  126. for i in l:
  127. r+=str(i)
  128. return(r.replace(' ',''))
  129. timesteps=int(options.timesteps)
  130. X=dataTrainNorm[0]
  131. for i in range(1,NumberOfFailures+1):
  132. X=np.vstack((X,dataTrainNorm[i]))
  133. xtrain=create_sequences(X,timesteps)
  134. km = TimeSeriesKMeans(n_clusters=NumberOfFailures+1, metric="dtw")
  135. modelpath="model_v1_unsupervised_"+str(timesteps)+listToString(features)+".pk"
  136. if options.train:
  137. km.fit(xtrain)
  138. km.to_pickle(modelpath)
  139. else:
  140. km.from_pickle(modelpath)
  141. #km.fit_predict(xtrain)
  142. colorline=['violet','lightcoral','cyan','lime','grey']
  143. colordot=['darkviolet','red','blue','green','black']
  144. featuresToPlot=features
  145. indexesToPlot=[]
  146. for i in featuresToPlot:
  147. indexesToPlot.append(features.index(i))
  148. def plot(data,ranges):
  149. km.fit_predict(data)
  150. # Expand data to plot with the timesteps samples of last sample
  151. datatoplot=data[:,0,:]
  152. datatoplot=np.vstack((datatoplot,data[ranges[len(ranges)-1][1],:,:]))
  153. labels=[] # Labels are assigned randomly by classifer
  154. for i in range(len(ranges)):
  155. b=Counter(km.labels_[ranges[i][0]:ranges[i][1]])
  156. labels.append(b.most_common(1)[0][0])
  157. print("\n\n\n\LABELS: ",labels,"\n\n")
  158. NumFeaturesToPlot=len(indexesToPlot)
  159. plt.rcParams.update({'font.size': 16})
  160. fig, axes = plt.subplots(
  161. nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
  162. )
  163. for i in range(NumFeaturesToPlot):
  164. init=0
  165. end=ranges[0][1]
  166. labelsplotted=[]
  167. for j in range(len(ranges)):
  168. if j==(len(ranges)-1): # Plot the last timesteps
  169. classtype=labels.index(labels[j])
  170. if classtype in labelsplotted:
  171. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  172. else:
  173. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  174. labelsplotted.append(classtype)
  175. else:
  176. classtype=labels.index(labels[j])
  177. if classtype in labelsplotted:
  178. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  179. else:
  180. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  181. labelsplotted.append(classtype)
  182. init=end
  183. if j<(len(ranges)-1):
  184. end+=(ranges[j+1][1]-ranges[j+1][0])
  185. x=[]
  186. y=[]
  187. for j in range(len(ranges)):
  188. x.append([])
  189. y.append([])
  190. for j in range(len(ranges)):
  191. for k in range(ranges[j][0],ranges[j][1]):
  192. try: # Idont know why sometimes fails index !!!!
  193. x[labels.index(km.labels_[k])].append(k+timesteps)
  194. y[labels.index(km.labels_[k])].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  195. except:
  196. x[0].append(k+timesteps)
  197. y[0].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  198. labelsplotted=[]
  199. for j in range(len(ranges)):
  200. classtype=labels.index(labels[j])
  201. if classtype in labelsplotted:
  202. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0)
  203. else:
  204. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0,label="Class type "+str(j) )
  205. labelsplotted.append(classtype)
  206. if i==(NumFeatures-1):
  207. axes[i].legend(loc='right')
  208. s=''
  209. s+=featureNames[features[indexesToPlot[i]]]
  210. s+=' '+unitNames[features[indexesToPlot[i]]]
  211. axes[i].set_ylabel(s)
  212. axes[i].grid()
  213. axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
  214. plt.show()
  215. '''
  216. Ranges=[]
  217. r=0
  218. for i in range(NumberOfFailures+1):
  219. Ranges.append([r,r+dataTrainNorm[i].shape[0]])
  220. r+=dataTrainNorm[i].shape[0]
  221. # Drop the last TIME_STEPS for plotting
  222. Ranges[NumberOfFailures][1]=Ranges[NumberOfFailures][1]-timesteps-1
  223. plot(xtrain,Ranges)
  224. '''
  225. # Try with test data
  226. X=dataTestNorm[0]
  227. Ranges=[[0,dataTestNorm[0].shape[0]]]
  228. r=dataTestNorm[0].shape[0]
  229. for i in range(1,NumberOfFailures+1):
  230. X=np.vstack((X,dataTestNorm[i]))
  231. Ranges.append([r,r+dataTestNorm[i].shape[0]])
  232. r+=dataTestNorm[i].shape[0]
  233. X=np.vstack((X,dataTestNorm[0])) # We add a last segment of no fail data
  234. Ranges.append([r,r+dataTestNorm[0].shape[0]])
  235. Ranges[len(Ranges)-1][1]=Ranges[len(Ranges)-1][1]-timesteps-1
  236. xtest=create_sequences(X,timesteps)
  237. km.fit_predict(xtest)
  238. plot(xtest,Ranges)
  239. exit(0)
  240. def anomalyMetric(labels,ranges):
  241. # FP, TP: false/true positive
  242. # TN, FN: true/false negative
  243. # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
  244. # Precision: Rate of positive results: TP/(TP+FP)
  245. # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
  246. lab=[] # Labels are assigned randomly by classifer
  247. TP=[]
  248. for i in range(NumberOfFailures+1):
  249. TP.append([])
  250. b=Counter(labels[ranges[i][0]:ranges[i][1]])
  251. lab.append(b.most_common(1)[0][0])
  252. print(lab)
  253. #for i in range(NumberOfFailures+1):
  254. anomalyMetric(km.labels_,Ranges)

Powered by TurnKey Linux.