暫無描述

v5_class.py 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. # Csar Fdez, UdL, 2025
  2. # Changes from v1: Normalization
  3. # IN v1, each failure type has its own normalization pars (mean and stdevs)
  4. # In v2, mean and stdev is the same for all data
  5. # v3.py trains the models looping in TIME_STEPS (4,8,12,16,20,24,....) finding the optimal Threshold factor
  6. # Derived from v3_class, derived from v3.py with code from v1_multifailure.py
  7. # This code don't train for multiple time steps !!
  8. # partial and total blocked condenser merged in one class.
  9. # Construction of train and test sets changed. Now is done by days
  10. import pandas as pd
  11. import matplotlib.pyplot as plt
  12. import datetime
  13. import numpy as np
  14. import keras
  15. import os.path
  16. from keras import layers
  17. from optparse import OptionParser
  18. import copy
  19. import pickle
  20. parser = OptionParser()
  21. parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
  22. parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
  23. #parser.add_option("-f", "--thresholdfactor", dest="TF", help="Threshold Factor ", default=1.4)
  24. # threshold makes no sense when classifying, becaues we apply many models and decide class for the less MSE
  25. (options, args) = parser.parse_args()
  26. # data files arrays. Index:
  27. # 0. No failure
  28. # 1. Blocked evaporator
  29. # 2. Full Blocked condenser
  30. # 3. Partial Blocked condenser
  31. # 4 Fan condenser not working
  32. # 5. Open door
  33. NumberOfFailures=3 # So far, we have only data for the first 4 types of failures
  34. datafiles=[[],[]] # 0 for train, 1 for test
  35. for i in range(NumberOfFailures+1):
  36. datafiles[0].append([])
  37. datafiles[1].append([])
  38. # Next set of ddata corresponds to Freezer, SP=-26
  39. datafiles[0][0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_']
  40. datafiles[1][0]=['2025-01-27_5_','2025-01-28_5_']
  41. datafiles[0][1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_']
  42. datafiles[1][1]=['2024-12-14_5_','2024-12-15_5_']
  43. datafiles[0][2]=['2024-12-18_5_','2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_']
  44. datafiles[1][2]=['2024-12-19_5_','2024-12-25_5_','2024-12-26_5_']
  45. datafiles[0][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_']
  46. datafiles[1][3]=['2024-12-31_5_','2025-01-01_5_']
  47. #r1s5 supply air flow temperature
  48. #r1s1 inlet evaporator temperature
  49. #r1s4 condenser outlet
  50. # VAriables r1s4 and pa1 apiii may not exists in cloud controlers
  51. features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
  52. features=['r1 s1','r1 s4','r1 s5']
  53. features=['r1 s5']
  54. # Feature combination suggested by AKO
  55. #features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
  56. #features=['r1 s1','r1 s4','r1 s5']
  57. #features=['r1 s1','r1 s5','pa1 apiii']
  58. #features=['r1 s5','pa1 apiii']
  59. features=['r1 s1','r1 s5']
  60. #features=['r1 s5']
  61. featureNames={}
  62. featureNames['r1 s1']='$T_{evap}$'
  63. featureNames['r1 s4']='$T_{cond}$'
  64. featureNames['r1 s5']='$T_{air}$'
  65. featureNames['pa1 apiii']='$P_{elec}$'
  66. unitNames={}
  67. unitNames['r1 s1']='$(^{o}C)$'
  68. unitNames['r1 s4']='$(^{o}C)$'
  69. unitNames['r1 s5']='$(^{o}C)$'
  70. unitNames['pa1 apiii']='$(W)$'
  71. #features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
  72. #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
  73. NumFeatures=len(features)
  74. df_list=[[],[]]
  75. for i in range(NumberOfFailures+1):
  76. df_list[0].append([])
  77. df_list[1].append([])
  78. for i in range(NumberOfFailures+1):
  79. dftemp=[]
  80. for f in datafiles[0][i]:
  81. print(" ", f)
  82. df1 = pd.read_csv('./data/'+f+'.csv')
  83. dftemp.append(df1)
  84. df_list[0][i]=pd.concat(dftemp)
  85. for i in range(NumberOfFailures+1):
  86. dftemp=[]
  87. for f in datafiles[1][i]:
  88. print(" ", f)
  89. #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
  90. df1 = pd.read_csv('./data/'+f+'.csv')
  91. dftemp.append(df1)
  92. df_list[1][i]=pd.concat(dftemp)
  93. # subsampled to 5' = 30 * 10"
  94. # We consider smaples every 5' because in production, we will only have data at this frequency
  95. subsamplingrate=30
  96. dataframe=[[],[]]
  97. for i in range(NumberOfFailures+1):
  98. dataframe[0].append([])
  99. dataframe[1].append([])
  100. for i in range(NumberOfFailures+1):
  101. datalength=df_list[0][i].shape[0]
  102. dataframe[0][i]=df_list[0][i].iloc[range(0,datalength,subsamplingrate)][features]
  103. dataframe[0][i].reset_index(inplace=True,drop=True)
  104. dataframe[0][i].dropna(inplace=True)
  105. for i in range(NumberOfFailures+1):
  106. datalength=df_list[1][i].shape[0]
  107. dataframe[1][i]=df_list[1][i].iloc[range(0,datalength,subsamplingrate)][features]
  108. dataframe[1][i].reset_index(inplace=True,drop=True)
  109. dataframe[1][i].dropna(inplace=True)
  110. # Train data is first 2/3 of data
  111. # Test data is: last 1/3 of data
  112. dataTrain=[]
  113. dataTest=[]
  114. for i in range(NumberOfFailures+1):
  115. dataTrain.append(dataframe[0][i].values)
  116. dataTest.append(dataframe[0][i])
  117. # Calculate means and stdev
  118. a=dataTrain[0]
  119. for i in range(1,NumberOfFailures+1):
  120. a=np.vstack((a,dataTrain[i]))
  121. means=a.mean(axis=0)
  122. stdevs=a.std(axis=0)
  123. def normalize2(train,test):
  124. return( (train-means)/stdevs, (test-means)/stdevs )
  125. dataTrainNorm=[]
  126. dataTestNorm=[]
  127. for i in range(NumberOfFailures+1):
  128. dataTrainNorm.append([])
  129. dataTestNorm.append([])
  130. for i in range(NumberOfFailures+1):
  131. (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
  132. def plotData():
  133. fig, axes = plt.subplots(
  134. nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  135. )
  136. for i in range(NumberOfFailures+1):
  137. axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
  138. axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
  139. #axes[1].legend()
  140. #axes[0].set_ylabel(features[0])
  141. #axes[1].set_ylabel(features[1])
  142. plt.show()
  143. #plotData()
  144. #exit(0)
  145. NumFilters=64
  146. KernelSize=7
  147. DropOut=0.2
  148. ThresholdFactor=1.4
  149. def create_sequences(values, time_steps):
  150. output = []
  151. for i in range(len(values) - time_steps + 1):
  152. output.append(values[i : (i + time_steps)])
  153. return np.stack(output)
  154. def listToString(l):
  155. r=''
  156. for i in l:
  157. r+=str(i)
  158. return(r.replace(' ',''))
  159. model=[]
  160. modelckpt_callback =[]
  161. es_callback =[]
  162. path_checkpoint=[]
  163. timesteps=int(options.timesteps)
  164. x_train=[]
  165. for i in range(NumberOfFailures+1):
  166. x_train.append(create_sequences(dataTrainNorm[i],timesteps))
  167. model.append([])
  168. model[i] = keras.Sequential(
  169. [
  170. layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])),
  171. layers.Conv1D(
  172. filters=NumFilters,
  173. kernel_size=KernelSize,
  174. padding="same",
  175. strides=2,
  176. activation="relu",
  177. ),
  178. layers.Dropout(rate=DropOut),
  179. layers.Conv1D(
  180. filters=int(NumFilters/2),
  181. kernel_size=KernelSize,
  182. padding="same",
  183. strides=2,
  184. activation="relu",
  185. ),
  186. layers.Conv1DTranspose(
  187. filters=int(NumFilters/2),
  188. kernel_size=KernelSize,
  189. padding="same",
  190. strides=2,
  191. activation="relu",
  192. ),
  193. layers.Dropout(rate=DropOut),
  194. layers.Conv1DTranspose(
  195. filters=NumFilters,
  196. kernel_size=KernelSize,
  197. padding="same",
  198. strides=2,
  199. activation="relu",
  200. ),
  201. layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"),
  202. ]
  203. )
  204. model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
  205. model[i].summary()
  206. path_checkpoint.append("model_class_v5_"+str(i)+"_"+str(timesteps)+listToString(features)+"_checkpoint.weights.h5")
  207. es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15))
  208. modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,))
  209. if options.train:
  210. history=[]
  211. for i in range(NumberOfFailures+1):
  212. history.append(model[i].fit( x_train[i], x_train[i], epochs=400, batch_size=128, validation_split=0.3, callbacks=[ es_callback[i], modelckpt_callback[i] ],))
  213. x_train_pred=model[i].predict(x_train[i])
  214. else:
  215. for i in range(NumberOfFailures+1):
  216. model[i].load_weights(path_checkpoint[i])
  217. # Let's plot some features
  218. colorline=['black','violet','lightcoral','cyan','lime','grey']
  219. colordot=['grey','darkviolet','red','blue','green','black']
  220. #featuresToPlot=['r1 s1','r1 s2','r1 s3','pa1 apiii']
  221. featuresToPlot=features
  222. indexesToPlot=[]
  223. for i in featuresToPlot:
  224. indexesToPlot.append(features.index(i))
  225. # 2nd scenario. Go over anomalies and classify it by less error
  226. datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3]]
  227. x_test=create_sequences(datalist[0],int(options.timesteps))
  228. for i in range(1,len(datalist)):
  229. x_test=np.vstack((x_test,create_sequences(datalist[i],int(options.timesteps))))
  230. # Define ranges for plotting in different colors
  231. testRanges=[]
  232. r=0
  233. for i in range(len(datalist)):
  234. testRanges.append([r,r+datalist[i].shape[0]-int(options.timesteps)])
  235. r+=datalist[i].shape[0]-int(options.timesteps)
  236. testClasses=[0,1,2,3]
  237. if not len(testClasses)==len(testRanges):
  238. print("ERROR: testClasses and testRanges must have same length")
  239. exit(0)
  240. x_test_predict=[]
  241. for m in range(NumberOfFailures+1):
  242. x_test_predict.append(model[m].predict(x_test))
  243. x_test_predict=np.array((x_test_predict))
  244. test_mae_loss =[]
  245. for m in range(NumberOfFailures+1):
  246. test_mae_loss.append(np.mean(np.abs(x_test_predict[m,:,:,:] - x_test), axis=1))
  247. test_mae_loss=np.array((test_mae_loss))
  248. test_mae_loss_average=np.mean(test_mae_loss,axis=2) # average over features
  249. classes=np.argmin(test_mae_loss_average,axis=0)
  250. x=[]
  251. y=[]
  252. for j in range(NumberOfFailures+1):
  253. x.append([])
  254. y.append([])
  255. for j in range(NumberOfFailures+1):
  256. for k in range(testRanges[j][0],testRanges[j][1]):
  257. if not classes[k]==testClasses[j]:
  258. x[classes[k]].append(k)
  259. y[classes[k]].append(x_test[k,0,indexesToPlot[0]]*stdevs[0]+means[0])
  260. def plotData4():
  261. NumFeaturesToPlot=len(indexesToPlot)
  262. plt.rcParams.update({'font.size': 16})
  263. fig, axes = plt.subplots(
  264. nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
  265. )
  266. for i in range(NumFeaturesToPlot):
  267. init=0
  268. end=testRanges[0][1]
  269. for j in range(NumberOfFailures+1):
  270. if NumFeaturesToPlot==1:
  271. axes.plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Class "+str(j), color=colorline[j],linewidth=1)
  272. else:
  273. axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Class "+str(j), color=colorline[j],linewidth=1)
  274. if j<NumberOfFailures:
  275. init=end
  276. end+=(testRanges[j+1][1]-testRanges[j+1][0])
  277. #if i==0:
  278. # axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
  279. s=''
  280. s+=featureNames[features[indexesToPlot[i]]]
  281. s+=' '+unitNames[features[indexesToPlot[i]]]
  282. if NumFeaturesToPlot==1:
  283. axes.set_ylabel(s)
  284. axes.grid()
  285. else:
  286. axes[i].set_ylabel(s)
  287. axes[i].grid()
  288. for j in range(NumberOfFailures+1):
  289. if NumFeaturesToPlot==1:
  290. axes.plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
  291. else:
  292. axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
  293. if NumFeaturesToPlot==1:
  294. axes.legend(ncol=4,loc=(0.1,0.98))
  295. else:
  296. axes[0].legend(ncol=4,loc=(0.1,0.98))
  297. #axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
  298. plt.show()
  299. def whichClass(k,ranges):
  300. for i in range(NumberOfFailures+1):
  301. if k in range(ranges[i][0],ranges[i][1]):
  302. return(i)
  303. print("Error: Class not exists")
  304. exit(0)
  305. ## It remains to implemenent anomaly metrics for each failure type
  306. def anomalyMetric(classes,testranges,testclasses):
  307. # FP, TP: false/true positive
  308. # TN, FN: true/false negative
  309. # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
  310. # Precision: Rate of positive results: TP/(TP+FP)
  311. # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
  312. TP=np.zeros(NumberOfFailures+1)
  313. FP=np.zeros(NumberOfFailures+1)
  314. FN=np.zeros(NumberOfFailures+1)
  315. Sensitivity=np.zeros(NumberOfFailures+1)
  316. Precision=np.zeros(NumberOfFailures+1)
  317. for i in range(len(testranges)):
  318. for k in range(testranges[i][0],testranges[i][1]):
  319. if classes[k]==testclasses[i]:
  320. TP[i]+=1
  321. else:
  322. FP[i]+=1
  323. for k in range(testranges[NumberOfFailures][1]):
  324. for i in range(len(testranges)):
  325. classK=whichClass(k,testranges)
  326. if not classK==testClasses[i]:
  327. if not classes[k]==classK:
  328. FN[classes[k]]+=1
  329. for i in range(NumberOfFailures+1):
  330. Sensitivity[i]=TP[i]/(TP[i]+FN[i])
  331. Precision[i]=TP[i]/(TP[i]+FP[i])
  332. S=Sensitivity.mean()
  333. P=Precision.mean()
  334. F1=2*S*P/(S+P)
  335. print("Sensitivity: ",Sensitivity)
  336. print("S: ",S)
  337. print("Precision: ",Precision)
  338. print("P: ",P)
  339. print("F1-Score: ",F1)
  340. anomalyMetric(classes,testRanges,testClasses)
  341. plotData4()
  342. exit(0)

Powered by TurnKey Linux.