123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- # Csar Fdez, UdL, 2025
- import pandas as pd
- import matplotlib.pyplot as plt
- import datetime
- import numpy as np
- import keras
- import os.path
- import pickle
- from keras import layers
- import copy
-
-
- # data files arrays. Index:
- # 0. No failure
- # 1. Blocked evaporator
- # 2. Full Blocked condenser
- # 3. Partial Blocked condenser
- # 4 Fan condenser not working
- # 5. Open door
-
-
- NumberOfFailures=5
- NumberOfFailures=4 # So far, we have only data for the first 4 types of failures
- datafiles=[]
- for i in range(NumberOfFailures+1):
- datafiles.append([])
-
- # Next set of ddata corresponds to Freezer, SP=-26
- datafiles[0]=['2024-08-07_5_','2024-08-08_5_']
- datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
- datafiles[2]=['2024-12-18_5_','2024-12-19_5_']
- datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
- datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
- #datafiles[4]=[]
-
- # Features suggested by Xavier
- features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
- features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
- NumFeatures=len(features)
-
- df_list=[]
- for i in range(NumberOfFailures+1):
- df_list.append([])
-
- for i in range(NumberOfFailures+1):
- dftemp=[]
- for f in datafiles[i]:
- print(" ", f)
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
- df1 = pd.read_csv('./data/'+f+'.csv')
- dftemp.append(df1)
- df_list[i]=pd.concat(dftemp)
-
-
- # subsampled to 5' = 30 * 10"
- # We consider smaples every 5' because in production, we will only have data at this frequency
- subsamplingrate=30
-
- dataframe=[]
- for i in range(NumberOfFailures+1):
- dataframe.append([])
-
- for i in range(NumberOfFailures+1):
- datalength=df_list[i].shape[0]
- dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
- dataframe[i].reset_index(inplace=True,drop=True)
- dataframe[i].dropna(inplace=True)
-
-
- # Train data is first 2/3 of data
- # Test data is: last 1/3 of data
- dataTrain=[]
- dataTest=[]
- for i in range(NumberOfFailures+1):
- dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
- dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
-
-
- def normalize2(train,test):
- # merges train and test
- means=[]
- stdevs=[]
- for i in range(NumFeatures):
- means.append(train[:,i].mean())
- stdevs.append(train[:,i].std())
- return( (train-means)/stdevs, (test-means)/stdevs )
-
- dataTrainNorm=[]
- dataTestNorm=[]
- for i in range(NumberOfFailures+1):
- dataTrainNorm.append([])
- dataTestNorm.append([])
-
- for i in range(NumberOfFailures+1):
- (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
-
- def plotData():
- fig, axes = plt.subplots(
- nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
- )
- for i in range(NumberOfFailures+1):
- axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
- axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
- #axes[1].legend()
- #axes[0].set_ylabel(features[0])
- #axes[1].set_ylabel(features[1])
- plt.show()
-
- #plotData()
-
-
- TIME_STEPS = 12
- def create_sequences(values, time_steps=TIME_STEPS):
- output = []
- for i in range(len(values) - time_steps + 1):
- output.append(values[i : (i + time_steps)])
- return np.stack(output)
-
- x_train=[]
- for i in range(NumberOfFailures+1):
- x_train.append(create_sequences(dataTrainNorm[i]))
-
-
- model=[]
- modelckpt_callback =[]
- es_callback =[]
- path_checkpoint=[]
- for i in range(NumberOfFailures+1):
- model.append([])
- model[i] = keras.Sequential(
- [
- layers.Input(shape=(x_train[i].shape[1], x_train[i].shape[2])),
- layers.Conv1D(
- filters=64,
- kernel_size=7,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Dropout(rate=0.2),
- layers.Conv1D(
- filters=32,
- kernel_size=7,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Conv1DTranspose(
- filters=32,
- kernel_size=7,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Dropout(rate=0.2),
- layers.Conv1DTranspose(
- filters=64,
- kernel_size=7,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=7, padding="same"),
- ]
- )
- model[i].compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
- model[i].summary()
- path_checkpoint.append("model_v1_"+str(i)+"._checkpoint.weights.h5")
- es_callback.append(keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15))
- modelckpt_callback.append(keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint[i], verbose=1, save_weights_only=True, save_best_only=True,))
-
-
-
- # Load models
- for i in range(NumberOfFailures+1):
- model[i].load_weights(path_checkpoint[i])
-
-
- x_train_pred=[]
- train_mae_loss=[]
- threshold=[]
- for i in range(NumberOfFailures+1):
- x_train_pred.append(model[i].predict(x_train[i]))
- train_mae_loss.append(np.mean(np.abs(x_train_pred[i] - x_train[i]), axis=1))
- threshold.append(np.max(train_mae_loss[i],axis=0))
-
- print("Threshold : ",threshold)
- for i in range(NumberOfFailures+1):
- threshold[i]=threshold[i]*1.3
- # Threshold is enlarged because, otherwise, for subsamples at 5' have many false positives
-
-
- # Anomaly metrics:
- # False positive: with datatTestNorm[0]
- # True negative: with datatTestNorm[i] i>0
-
- def AtLeastOneTrue(x):
- for i in range(NumFeatures):
- if x[i]:
- return True
- return False
-
- def anomalyMetric(testList): # first of list is non failure data
- # FP, TP: false/true positive
- # TN, FN: true/false negative
- # Sensitivity: probab of fail detection if data is fail
- # Specificity: prob of no fail detection if data is well
- x_test = create_sequences(testList[0])
- x_test_pred = model[0].predict(x_test)
- test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
- anomalies = test_mae_loss > threshold[0]
- count=0
- for i in range(anomalies.shape[0]):
- if AtLeastOneTrue(anomalies[i]):
- count+=1
- FP=count
- TN=anomalies.shape[0]-1
- count=0
- TP=np.zeros((NumberOfFailures))
- FN=np.zeros((NumberOfFailures))
- for i in range(1,len(testList)):
- x_test = create_sequences(testList[i])
- x_test_pred = model[0].predict(x_test)
- test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
- anomalies = test_mae_loss > threshold[0]
- count=0
- for j in range(anomalies.shape[0]):
- if AtLeastOneTrue(anomalies[j]):
- count+=1
- TP[i-1] = count
- FN[i-1] = anomalies.shape[0]-count
- Sensitivity=TP.sum()/(TP.sum()+FN.sum())
- Specifity=TN/(TN+FP)
- print("Sensitivity: ",Sensitivity)
- print("Specifity: ",Specifity)
- return Sensitivity+Specifity
-
-
-
- MaxMetric=anomalyMetric([dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]])
-
- # Now iterate by permuting features and order them depending on Metric reduction
-
-
- metric=np.zeros(NumFeatures)
- for i in range(NumFeatures):
- dataTestNormCopy=[]
- # A deep copy is required because shuffle is an inline operation
- for j in range(NumberOfFailures+1):
- dataTestNormCopy.append([])
- dataTestNormCopy[j]=copy.deepcopy(dataTestNorm[j])
- for j in range(NumberOfFailures+1):
- np.random.shuffle(dataTestNormCopy[j][:,i])
- metric[i]=anomalyMetric([dataTestNormCopy[0],dataTestNormCopy[1],dataTestNormCopy[2],dataTestNormCopy[3],dataTestNormCopy[4]])
-
-
- # features ordered from least to most important
- indexes_ordered=np.argsort(metric)
-
-
- # Now, lets eliminate features accumulatively from least to most
- metric=np.zeros(NumFeatures)
- dataTestNormCopy=[]
- for j in range(NumberOfFailures+1):
- dataTestNormCopy.append([])
- dataTestNormCopy[j]=copy.deepcopy(dataTestNorm[j])
- # A deep copy is required because shuffle is an inline operation
- for i in range(NumFeatures):
- for j in range(NumberOfFailures+1):
- np.random.shuffle(dataTestNormCopy[j][:,i])
- metric[i]=anomalyMetric([dataTestNormCopy[0],dataTestNormCopy[1],dataTestNormCopy[2],dataTestNormCopy[3],dataTestNormCopy[4]])
-
- # print features to be used in v1_multifailure.py
-
- #features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2','tc s3']
- F=np.array(features)
-
- l=indexes_ordered.shape[0]
- for i in range(3,NumFeatures-5):
- print(F[indexes_ordered[l-i:]])
-
- '''
-
- ['r1 s10' 'r1 s6' 'r2 s8']
- ['tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- ['r2 s2' 'tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- ['r2 s1' 'r2 s2' 'tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- ['r1 s8' 'r2 s1' 'r2 s2' 'tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- ['pa1 apiii' 'r1 s8' 'r2 s1' 'r2 s2' 'tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- ['r1 s5' 'pa1 apiii' 'r1 s8' 'r2 s1' 'r2 s2' 'tc s1' 'r1 s10' 'r1 s6'
- 'r2 s8']
- ['r2 s3' 'r1 s5' 'pa1 apiii' 'r1 s8' 'r2 s1' 'r2 s2' 'tc s1' 'r1 s10'
- 'r1 s6' 'r2 s8']
- ['tc s2' 'r2 s3' 'r1 s5' 'pa1 apiii' 'r1 s8' 'r2 s1' 'r2 s2' 'tc s1'
- 'r1 s10' 'r1 s6' 'r2 s8']
- ['r1 s7' 'tc s2' 'r2 s3' 'r1 s5' 'pa1 apiii' 'r1 s8' 'r2 s1' 'r2 s2'
- 'tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- ['r2 s5' 'r1 s7' 'tc s2' 'r2 s3' 'r1 s5' 'pa1 apiii' 'r1 s8' 'r2 s1'
- 'r2 s2' 'tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- ['r2 s7' 'r2 s5' 'r1 s7' 'tc s2' 'r2 s3' 'r1 s5' 'pa1 apiii' 'r1 s8'
- 'r2 s1' 'r2 s2' 'tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- ['r2 s4' 'r2 s7' 'r2 s5' 'r1 s7' 'tc s2' 'r2 s3' 'r1 s5' 'pa1 apiii'
- 'r1 s8' 'r2 s1' 'r2 s2' 'tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- ['r1 s9' 'r2 s4' 'r2 s7' 'r2 s5' 'r1 s7' 'tc s2' 'r2 s3' 'r1 s5'
- 'pa1 apiii' 'r1 s8' 'r2 s1' 'r2 s2' 'tc s1' 'r1 s10' 'r1 s6' 'r2 s8']
- '''
|