Нема описа

v2_unsupervised.py 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. # Csar Fdez, UdL, 2025
  2. # Unsupervised classification. Uses tslearn
  3. # https://tslearn.readthedocs.io/en/stable/index.html
  4. # Be careful with v0_unsupervised and all versions for supervised.
  5. # because dataTrain is not stacke before create_sequences, so,
  6. # the sets are not aligned in time
  7. # Same as v1 but changing data
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. import datetime
  11. import numpy as np
  12. import os.path
  13. from optparse import OptionParser
  14. import copy
  15. import pickle
  16. from tslearn.clustering import TimeSeriesKMeans
  17. from tslearn.neighbors import KNeighborsTimeSeries
  18. from collections import Counter
  19. parser = OptionParser()
  20. parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
  21. parser.add_option("-p", "--plot", dest="plot", help="Plot Data (false)", default=False, action="store_true")
  22. parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS (default 12)", default=12)
  23. parser.add_option("-f", "--facilitysetpoint", dest="fsp", help="Facility and Set Point (default 5-26)", default="5-26")
  24. (options, args) = parser.parse_args()
  25. # data files arrays. Index:
  26. # 0. No failure
  27. # 1. Blocked evaporator
  28. # 2. Full Blocked condenser
  29. # 3 Fan condenser not working
  30. # 4. Open door
  31. FailureName=['No Fail','Block Evap', 'Block Cond', 'Not Fan Cond', 'Open Door']
  32. NumberOfFailures=4
  33. datafiles={}
  34. listofFacilitySetpoint=['5-26','5-18','5-22','30','32','34']
  35. for j in listofFacilitySetpoint:
  36. datafiles[j]=[]
  37. for i in range(NumberOfFailures+1):
  38. datafiles[j].append([])
  39. # Freezer, SP=-26
  40. datafiles['5-26'][0]=['2025-01-25_5_','2025-01-26_5_','2025-01-29_5_','2025-01-30_5_','2025-01-31_5_','2025-02-01_5_','2025-02-02_5_','2025-02-03_5_','2025-02-04_5_']
  41. datafiles['5-26'][1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
  42. datafiles['5-26'][2]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
  43. datafiles['5-26'][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
  44. datafiles['5-26'][4]=['2025-02-13_5_','2025-02-14_5_','2025-02-15_5_','2025-02-16_5_','2025-02-17_5_','2025-02-18_5_','2025-02-19_5_']
  45. # Freezer, SP=-18
  46. datafiles['5-18'][0]=['2025-01-21_5_','2025-01-22_5_','2025-01-23_5_'] #
  47. datafiles['5-18'][1]=['2025-02-17_5_','2025-02-18_5_','2025-02-19_5_'] #
  48. datafiles['5-18'][2]=['2025-03-10_5_','2025-03-11_5_','2025-03-12_5_'] #
  49. datafiles['5-18'][3]=['2025-01-04_5_','2025-01-05_5_','2025-01-06_5_','2025-01-07_5_'] #
  50. datafiles['5-18'][4]=['2025-04-30_5_','2025-05-01_5_','2025-05-02_5_','2025-05-03_5_','2025-05-04_5_','2025-05-05_5_'] #
  51. # Freezer, SP=-22
  52. datafiles['5-22'][0]=['2025-03-13_5_','2025-03-14_5_','2025-03-15_5_','2025-03-16_5_']
  53. datafiles['5-22'][1]=['2025-03-21_5_','2025-03-22_5_','2025-03-23_5_','2025-03-24_5_','2025-03-25_5_'] #
  54. datafiles['5-22'][2]=['2025-03-26_5_','2025-03-27_5_','2025-03-28_5_']
  55. datafiles['5-22'][3]=['2025-03-31_5_','2025-04-01_5_','2025-04-02_5_','2025-04-03_5_']
  56. datafiles['5-22'][4]=['2025-03-17_5_']
  57. # Refrigerator 0
  58. datafiles['30'][0]=['2025-01-21_3_','2025-01-22_3_','2025-01-23_3_','2025-01-24_3_','2025-01-25_3_','2025-01-26_3_']
  59. datafiles['30'][1]=['2024-12-11_3_','2024-12-12_3_','2024-12-13_3_','2024-12-14_3_','2024-12-15_3_']
  60. datafiles['30'][2]=['2024-12-18_3_','2024-12-19_3_','2024-12-20_3_']
  61. datafiles['30'][3]=['2024-12-28_3_','2024-12-29_3_','2024-12-30_3_','2024-12-31_3_','2025-01-01_3_']
  62. #datafiles['30'][4]=['2025-02-12_3_','2025-02-13_3_','2025-02-14_3_','2025-02-15_3_','2025-02-16_3_','2025-02-17_3_','2025-02-18_3_','2025-02-19_3_'] # es solapa amb ventilador no funcionant. i els dies 20 i 21 no hi son
  63. datafiles['30'][4]=['2025-05-08_3_','2025-05-09_3_','2025-05-10_3_','2025-05-11_3_','2025-05-12_3_']
  64. # Refrigerator 2
  65. datafiles['32'][0]=['2025-03-13_3_','2025-03-14_3_','2025-03-15_3_','2025-03-16_3_']
  66. datafiles['32'][1]=['2025-03-10_3_']
  67. datafiles['32'][2]=['2025-03-17_3_']
  68. datafiles['32'][3]=['2025-03-24_3_','2025-03-25_3_','2025-03-26_3_']
  69. datafiles['32'][4]=['2025-03-27_3_','2025-03-28_3_']
  70. # Refrigerator 4
  71. datafiles['34'][0]=['2025-03-31_3_','2025-04-01_3_','2025-04-02_3_','2025-04-03_3_']
  72. # diuen: que amb aquest set no obtenen gel i aquest experiment es pot descartar ????
  73. datafiles['34'][2]=['2025-04-11_3_','2025-04-12_3_','2025-04-13_3_','2025-04-14_3_']
  74. datafiles['34'][3]=['2025-04-30_3_','2025-05-01_3_','2025-05-02_3_','2025-05-03_3_','2025-05-04_3_','2025-05-05_3_']
  75. datafiles['34'][4]=['2025-04-23_3_','2025-04-24_3_','2025-04-25_3_']
  76. # data files arrays. Index:
  77. # 0. No failure
  78. # 1. Blocked evaporator
  79. # 2. Full Blocked condenser
  80. # 3 Fan condenser not working
  81. # 4. Open door
  82. facilitySetpoint=options.fsp
  83. # Features suggested by Xavier
  84. # Care with 'tc s3' because on datafiles[0] is always nulll
  85. # Seems to be incoropored in new tests
  86. #r1s5 supply air flow temperature
  87. #r1s1 inlet evaporator temperature
  88. #r1s4 condenser outlet
  89. # VAriables r1s4 and pa1 apiii may not exists in cloud controlers
  90. features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
  91. #features=['r1 s1','r1 s4','r1 s5']
  92. featureNames={}
  93. featureNames['r1 s1']='$T_{evap}$'
  94. featureNames['r1 s4']='$T_{cond}$'
  95. featureNames['r1 s5']='$T_{air}$'
  96. featureNames['pa1 apiii']='$P_{elec}$'
  97. unitNames={}
  98. unitNames['r1 s1']='$(^{o}C)$'
  99. unitNames['r1 s4']='$(^{o}C)$'
  100. unitNames['r1 s5']='$(^{o}C)$'
  101. unitNames['pa1 apiii']='$(W)$'
  102. #features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
  103. #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
  104. NumFeatures=len(features)
  105. df_list=[]
  106. for i in range(NumberOfFailures+1):
  107. df_list.append([])
  108. for i in range(NumberOfFailures+1):
  109. dftemp=[]
  110. for f in datafiles[facilitySetpoint][i]:
  111. print(" ", f)
  112. #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
  113. df1 = pd.read_csv('./data/'+f+'.csv')
  114. dftemp.append(df1)
  115. df_list[i]=pd.concat(dftemp)
  116. # subsampled to 5' = 30 * 10"
  117. # We consider smaples every 5' because in production, we will only have data at this frequency
  118. subsamplingrate=30
  119. dataframe=[]
  120. for i in range(NumberOfFailures+1):
  121. dataframe.append([])
  122. for i in range(NumberOfFailures+1):
  123. datalength=df_list[i].shape[0]
  124. dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
  125. dataframe[i].reset_index(inplace=True,drop=True)
  126. dataframe[i].dropna(inplace=True)
  127. # Train data is first 2/3 of data
  128. # Test data is: last 1/3 of data
  129. dataTrain=[]
  130. dataTest=[]
  131. NumberOfSamplesForTest=0
  132. for i in range(NumberOfFailures+1):
  133. dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
  134. if NumberOfSamplesForTest==0: # Take all
  135. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
  136. else:
  137. dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):int(dataframe[i].shape[0]*2/3)+NumberOfSamplesForTest,:])
  138. # Calculate means and stdev
  139. a=dataTrain[0]
  140. for i in range(1,NumberOfFailures+1):
  141. a=np.vstack((a,dataTrain[i]))
  142. means=a.mean(axis=0)
  143. stdevs=a.std(axis=0)
  144. def normalize2(train,test):
  145. return( (train-means)/stdevs, (test-means)/stdevs )
  146. dataTrainNorm=[]
  147. dataTestNorm=[]
  148. for i in range(NumberOfFailures+1):
  149. dataTrainNorm.append([])
  150. dataTestNorm.append([])
  151. for i in range(NumberOfFailures+1):
  152. (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
  153. def plotData():
  154. fig, axes = plt.subplots(
  155. nrows=NumberOfFailures+1, ncols=NumFeatures, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
  156. )
  157. for i in range(NumberOfFailures+1):
  158. for j in range(NumFeatures):
  159. #axes[i][j].plot(np.concatenate((dataTrainNorm[i][:,j],dataTestNorm[i][:,j])),label="Fail "+str(i)+", feature 0")
  160. axes[i][j].plot(np.concatenate((dataTrain[i][:,j],dataTest[i][:,j])),label="Fail "+str(i)+", feature 0")
  161. if i==(NumberOfFailures):
  162. axes[i][j].set_xlabel(features[j])
  163. if j==0:
  164. axes[i][j].set_ylabel(FailureName[i])
  165. #axes[1].legend()
  166. #axes[0].set_ylabel(features[0])
  167. #axes[1].set_ylabel(features[1])
  168. plt.show()
  169. if options.plot:
  170. plotData()
  171. exit()
  172. def create_sequences(values, time_steps):
  173. output = []
  174. for i in range(len(values) - time_steps ):
  175. output.append(values[i : (i + time_steps)])
  176. return np.stack(output)
  177. def listToString(l):
  178. r=''
  179. for i in l:
  180. r+=str(i)
  181. return(r.replace(' ',''))
  182. timesteps=int(options.timesteps)
  183. X=dataTrainNorm[0]
  184. for i in range(1,NumberOfFailures+1):
  185. X=np.vstack((X,dataTrainNorm[i]))
  186. xtrain=create_sequences(X,timesteps)
  187. km = TimeSeriesKMeans(n_clusters=NumberOfFailures+1, metric="dtw", random_state=0)
  188. modelpath="model_v2_unsupervised_"+facilitySetpoint+"_"+str(timesteps)+listToString(features)+".pk"
  189. if options.train:
  190. km.fit(xtrain)
  191. km.to_pickle(modelpath)
  192. else:
  193. km.from_pickle(modelpath)
  194. colorline=['violet','lightcoral','cyan','lime','grey']
  195. colordot=['darkviolet','red','blue','green','black']
  196. featuresToPlot=features
  197. indexesToPlot=[]
  198. for i in featuresToPlot:
  199. indexesToPlot.append(features.index(i))
  200. def plot(data,ranges):
  201. km.fit_predict(data)
  202. # Expand data to plot with the timesteps samples of last sample
  203. datatoplot=data[:,0,:]
  204. datatoplot=np.vstack((datatoplot,data[ranges[len(ranges)-1][1],:,:]))
  205. labels=[] # Labels are assigned randomly by classifer
  206. for i in range(len(ranges)):
  207. b=Counter(km.labels_[ranges[i][0]:ranges[i][1]])
  208. labels.append(b.most_common(1)[0][0])
  209. print("\n\n\n LABELS: ",labels,"\n\n")
  210. NumFeaturesToPlot=len(indexesToPlot)
  211. plt.rcParams.update({'font.size': 16})
  212. fig, axes = plt.subplots(
  213. nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
  214. )
  215. for i in range(NumFeaturesToPlot):
  216. init=0
  217. end=ranges[0][1]
  218. labelsplotted=[]
  219. for j in range(len(ranges)):
  220. if j==(len(ranges)-1): # Plot the last timesteps
  221. classtype=labels.index(labels[j])
  222. if classtype in labelsplotted:
  223. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  224. else:
  225. axes[i].plot(range(init,end+timesteps),datatoplot[ranges[j][0]:ranges[j][1]+timesteps,indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  226. labelsplotted.append(classtype)
  227. else:
  228. classtype=labels.index(labels[j])
  229. if classtype in labelsplotted:
  230. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[classtype],linewidth=1)
  231. else:
  232. axes[i].plot(range(init,end),datatoplot[ranges[j][0]:ranges[j][1],indexesToPlot[i]]*stdevs[i]+means[i], label="Class: "+str(classtype), color=colorline[classtype],linewidth=1)
  233. labelsplotted.append(classtype)
  234. init=end
  235. if j<(len(ranges)-1):
  236. end+=(ranges[j+1][1]-ranges[j+1][0])
  237. x=[]
  238. y=[]
  239. for j in range(len(ranges)):
  240. x.append([])
  241. y.append([])
  242. for j in range(len(ranges)):
  243. for k in range(ranges[j][0],ranges[j][1]):
  244. try: # Idont know why sometimes fails index !!!!
  245. x[labels.index(km.labels_[k])].append(k+timesteps)
  246. y[labels.index(km.labels_[k])].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  247. except:
  248. x[0].append(k+timesteps)
  249. y[0].append(datatoplot[k+timesteps,indexesToPlot[i]]*stdevs[i]+means[i])
  250. labelsplotted=[]
  251. for j in range(len(ranges)):
  252. classtype=labels.index(labels[j])
  253. if classtype in labelsplotted:
  254. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0)
  255. else:
  256. axes[i].plot(x[j],y[j] ,color=colordot[labels.index(labels[j])],marker='.',linewidth=0,label="Class type "+str(j) )
  257. labelsplotted.append(classtype)
  258. if i==(NumFeatures-1):
  259. axes[i].legend(loc='right')
  260. s=''
  261. s+=featureNames[features[indexesToPlot[i]]]
  262. s+=' '+unitNames[features[indexesToPlot[i]]]
  263. axes[i].set_ylabel(s)
  264. axes[i].grid()
  265. axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
  266. plt.show()
  267. '''
  268. Ranges=[]
  269. r=0
  270. for i in range(NumberOfFailures+1):
  271. Ranges.append([r,r+dataTrainNorm[i].shape[0]])
  272. r+=dataTrainNorm[i].shape[0]
  273. # Drop the last TIME_STEPS for plotting
  274. Ranges[NumberOfFailures][1]=Ranges[NumberOfFailures][1]-timesteps-1
  275. plot(xtrain,Ranges)
  276. '''
  277. # Try with test data
  278. X=dataTestNorm[0]
  279. Ranges=[[0,dataTestNorm[0].shape[0]]]
  280. r=dataTestNorm[0].shape[0]
  281. for i in range(1,NumberOfFailures+1):
  282. X=np.vstack((X,dataTestNorm[i]))
  283. Ranges.append([r,r+dataTestNorm[i].shape[0]])
  284. r+=dataTestNorm[i].shape[0]
  285. #X=np.vstack((X,dataTestNorm[0])) # We add a last segment of no fail data
  286. #Ranges.append([r,r+dataTestNorm[0].shape[0]])
  287. Ranges[len(Ranges)-1][1]=Ranges[len(Ranges)-1][1]-timesteps-1
  288. xtest=create_sequences(X,timesteps)
  289. def anomalyMetric(labels,ranges):
  290. # Takes ONLY the firsts segments of Ranges
  291. # FP, TP: false/true positive
  292. # TN, FN: true/false negative
  293. # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
  294. # Precision: Rate of positive results: TP/(TP+FP)
  295. # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
  296. print("Labels on test: ",set(labels))
  297. lab=[] # Labels are assigned randomly by classifer
  298. TP=[]
  299. FN=[]
  300. TPFP=[]
  301. ASSIGNED_CLASS=[]
  302. for i in range(NumberOfFailures+1):
  303. ASSIGNED_CLASS.append(-1)
  304. UNASSIGNED_CLASS=[]
  305. for i in range(NumberOfFailures+1):
  306. TP.append([])
  307. FN.append([])
  308. TPFP.append([])
  309. Class=Counter(labels[ranges[i][0]:ranges[i][1]]).most_common(1)[0][0]
  310. if not Class in ASSIGNED_CLASS:
  311. ASSIGNED_CLASS[i]=Class
  312. for i in range(NumberOfFailures+1):
  313. if not i in ASSIGNED_CLASS:
  314. UNASSIGNED_CLASS.append(i)
  315. for i in range(NumberOfFailures+1):
  316. if ASSIGNED_CLASS[i]==-1:
  317. ASSIGNED_CLASS[i]=UNASSIGNED_CLASS.pop(0)
  318. for i in range(NumberOfFailures+1):
  319. lab.append(ASSIGNED_CLASS[i])
  320. for i in range(NumberOfFailures+1):
  321. counttp=0
  322. countfn=0
  323. for j in range(ranges[i][0],ranges[i][1]-timesteps):
  324. if lab.index(labels[j])==i:
  325. counttp+=1
  326. else:
  327. countfn+=1
  328. TP[i]=counttp
  329. FN[i]=countfn
  330. for i in range(NumberOfFailures+1):
  331. count=0
  332. for ii in range(NumberOfFailures+1):
  333. for j in range(ranges[ii][0],ranges[ii][1]-timesteps):
  334. if lab.index(labels[j])==i:
  335. count+=1
  336. TPFP[i]=count
  337. segmentLength=[]
  338. for i in range(NumberOfFailures+1):
  339. segmentLength.append(ranges[i][1]-timesteps-ranges[i][0])
  340. totalSegmentLength=0
  341. for i in range(NumberOfFailures+1):
  342. totalSegmentLength+=segmentLength[i]
  343. Sensitivity=0
  344. Precision=0
  345. for i in range(NumberOfFailures+1):
  346. Sensitivity+=TP[i]/(TP[i]+FN[i])*segmentLength[i]/totalSegmentLength
  347. Precision+=TP[i]/(TPFP[i])*segmentLength[i]/totalSegmentLength
  348. print(lab)
  349. print("TP: ",TP)
  350. print("FN: ",FN)
  351. print("TPFP: ",TPFP)
  352. print("Sensitivity: ",Sensitivity)
  353. print("Precision: ",Precision)
  354. print("F1-Score: ",2*Precision*Sensitivity/(Sensitivity+Precision))
  355. km.fit_predict(xtest)
  356. anomalyMetric(km.labels_,Ranges)
  357. plot(xtest,Ranges)

Powered by TurnKey Linux.