|
|
@@ -25,6 +25,7 @@ import pickle
|
|
25
|
25
|
parser = OptionParser()
|
|
26
|
26
|
parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
|
|
27
|
27
|
parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
|
|
|
28
|
+parser.add_option("-r", "--transition", dest="transition", help="Includes transition data (false)", default=False, action="store_true")
|
|
28
|
29
|
#parser.add_option("-f", "--thresholdfactor", dest="TF", help="Threshold Factor ", default=1.4)
|
|
29
|
30
|
# threshold makes no sense when classifying, becaues we apply many models and decide class for the less MSE
|
|
30
|
31
|
|
|
|
@@ -48,17 +49,25 @@ for i in range(NumberOfFailures+1):
|
|
48
|
49
|
|
|
49
|
50
|
# Next set of ddata corresponds to Freezer, SP=-26
|
|
50
|
51
|
datafiles[0][0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_']
|
|
51
|
|
-datafiles[1][0]=['2025-01-27_5_','2025-01-28_5_']
|
|
52
|
|
-
|
|
53
|
52
|
datafiles[0][1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_']
|
|
54
|
|
-datafiles[1][1]=['2024-12-14_5_','2024-12-15_5_']
|
|
55
|
|
-
|
|
56
|
53
|
datafiles[0][2]=['2024-12-18_5_','2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_']
|
|
57
|
|
-datafiles[1][2]=['2024-12-19_5_','2024-12-25_5_','2024-12-26_5_']
|
|
|
54
|
+datafiles[0][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_']
|
|
58
|
55
|
|
|
|
56
|
+if options.transition:
|
|
|
57
|
+ datafiles[1][0]=['2025-01-27_5_','2025-01-28_5_']
|
|
|
58
|
+ datafiles[1][1]=['2024-12-14_5_','2024-12-15_5_','2024-12-16_5_'] # with TRANSITION
|
|
|
59
|
+ datafiles[1][2]=['2024-12-17_5_','2024-12-19_5_','2024-12-25_5_','2024-12-26_5_'] # with TRANSITION
|
|
|
60
|
+ datafiles[1][3]=['2024-12-27_5_','2024-12-31_5_','2025-01-01_5_'] # with TRANSITION
|
|
|
61
|
+else:
|
|
|
62
|
+ datafiles[1][0]=['2025-01-27_5_','2025-01-28_5_']
|
|
|
63
|
+ datafiles[1][1]=['2024-12-14_5_','2024-12-15_5_']
|
|
|
64
|
+ datafiles[1][2]=['2024-12-19_5_','2024-12-25_5_','2024-12-26_5_']
|
|
|
65
|
+ datafiles[1][3]=['2024-12-31_5_','2025-01-01_5_']
|
|
|
66
|
+
|
|
|
67
|
+
|
|
|
68
|
+#datafiles[0][4]=['2025-02-05_5_']
|
|
|
69
|
+#datafiles[1][4]=['2025-02-05_5_']
|
|
59
|
70
|
|
|
60
|
|
-datafiles[0][3]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_']
|
|
61
|
|
-datafiles[1][3]=['2024-12-31_5_','2025-01-01_5_']
|
|
62
|
71
|
|
|
63
|
72
|
#r1s5 supply air flow temperature
|
|
64
|
73
|
#r1s1 inlet evaporator temperature
|
|
|
@@ -72,10 +81,10 @@ features=['r1 s1','r1 s4','r1 s5']
|
|
72
|
81
|
features=['r1 s5']
|
|
73
|
82
|
# Feature combination suggested by AKO
|
|
74
|
83
|
#features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
|
|
75
|
|
-#features=['r1 s1','r1 s4','r1 s5']
|
|
|
84
|
+features=['r1 s1','r1 s4','r1 s5']
|
|
76
|
85
|
#features=['r1 s1','r1 s5','pa1 apiii']
|
|
77
|
86
|
#features=['r1 s5','pa1 apiii']
|
|
78
|
|
-features=['r1 s1','r1 s5']
|
|
|
87
|
+#features=['r1 s1','r1 s5']
|
|
79
|
88
|
#features=['r1 s5']
|
|
80
|
89
|
|
|
81
|
90
|
|
|
|
@@ -92,11 +101,6 @@ unitNames['r1 s4']='$(^{o}C)$'
|
|
92
|
101
|
unitNames['r1 s5']='$(^{o}C)$'
|
|
93
|
102
|
unitNames['pa1 apiii']='$(W)$'
|
|
94
|
103
|
|
|
95
|
|
-
|
|
96
|
|
-#features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
|
|
97
|
|
-
|
|
98
|
|
-#features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
|
|
99
|
|
-
|
|
100
|
104
|
NumFeatures=len(features)
|
|
101
|
105
|
|
|
102
|
106
|
df_list=[[],[]]
|
|
|
@@ -121,8 +125,6 @@ for i in range(NumberOfFailures+1):
|
|
121
|
125
|
dftemp.append(df1)
|
|
122
|
126
|
df_list[1][i]=pd.concat(dftemp)
|
|
123
|
127
|
|
|
124
|
|
-
|
|
125
|
|
-
|
|
126
|
128
|
# subsampled to 5' = 30 * 10"
|
|
127
|
129
|
# We consider smaples every 5' because in production, we will only have data at this frequency
|
|
128
|
130
|
subsamplingrate=30
|
|
|
@@ -137,6 +139,7 @@ for i in range(NumberOfFailures+1):
|
|
137
|
139
|
dataframe[0][i]=df_list[0][i].iloc[range(0,datalength,subsamplingrate)][features]
|
|
138
|
140
|
dataframe[0][i].reset_index(inplace=True,drop=True)
|
|
139
|
141
|
dataframe[0][i].dropna(inplace=True)
|
|
|
142
|
+
|
|
140
|
143
|
for i in range(NumberOfFailures+1):
|
|
141
|
144
|
datalength=df_list[1][i].shape[0]
|
|
142
|
145
|
dataframe[1][i]=df_list[1][i].iloc[range(0,datalength,subsamplingrate)][features]
|
|
|
@@ -144,13 +147,13 @@ for i in range(NumberOfFailures+1):
|
|
144
|
147
|
dataframe[1][i].dropna(inplace=True)
|
|
145
|
148
|
|
|
146
|
149
|
|
|
147
|
|
-# Train data is first 2/3 of data
|
|
|
150
|
+# Train data is first 2/3 of data. Not exactly. L
|
|
148
|
151
|
# Test data is: last 1/3 of data
|
|
149
|
152
|
dataTrain=[]
|
|
150
|
153
|
dataTest=[]
|
|
151
|
154
|
for i in range(NumberOfFailures+1):
|
|
152
|
|
- dataTrain.append(dataframe[0][i].values)
|
|
153
|
|
- dataTest.append(dataframe[0][i])
|
|
|
155
|
+ dataTrain.append(dataframe[0][i])
|
|
|
156
|
+ dataTest.append(dataframe[1][i])
|
|
154
|
157
|
|
|
155
|
158
|
# Calculate means and stdev
|
|
156
|
159
|
a=dataTrain[0]
|
|
|
@@ -171,34 +174,16 @@ for i in range(NumberOfFailures+1):
|
|
171
|
174
|
for i in range(NumberOfFailures+1):
|
|
172
|
175
|
(dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
|
|
173
|
176
|
|
|
174
|
|
-def plotData():
|
|
175
|
|
- fig, axes = plt.subplots(
|
|
176
|
|
- nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
177
|
|
- )
|
|
178
|
|
- for i in range(NumberOfFailures+1):
|
|
179
|
|
- axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
|
|
180
|
|
- axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
|
|
181
|
|
- #axes[1].legend()
|
|
182
|
|
- #axes[0].set_ylabel(features[0])
|
|
183
|
|
- #axes[1].set_ylabel(features[1])
|
|
184
|
|
- plt.show()
|
|
185
|
|
-
|
|
186
|
|
-#plotData()
|
|
187
|
|
-#exit(0)
|
|
188
|
|
-
|
|
189
|
177
|
|
|
190
|
178
|
NumFilters=64
|
|
191
|
179
|
KernelSize=7
|
|
192
|
180
|
DropOut=0.2
|
|
193
|
|
-ThresholdFactor=1.4
|
|
194
|
181
|
def create_sequences(values, time_steps):
|
|
195
|
182
|
output = []
|
|
196
|
183
|
for i in range(len(values) - time_steps + 1):
|
|
197
|
184
|
output.append(values[i : (i + time_steps)])
|
|
198
|
185
|
return np.stack(output)
|
|
199
|
186
|
|
|
200
|
|
-
|
|
201
|
|
-
|
|
202
|
187
|
def listToString(l):
|
|
203
|
188
|
r=''
|
|
204
|
189
|
for i in l:
|
|
|
@@ -295,8 +280,8 @@ for i in range(1,len(datalist)):
|
|
295
|
280
|
testRanges=[]
|
|
296
|
281
|
r=0
|
|
297
|
282
|
for i in range(len(datalist)):
|
|
298
|
|
- testRanges.append([r,r+datalist[i].shape[0]-int(options.timesteps)])
|
|
299
|
|
- r+=datalist[i].shape[0]-int(options.timesteps)
|
|
|
283
|
+ testRanges.append([r,r+datalist[i].shape[0]-int(options.timesteps)+1])
|
|
|
284
|
+ r+=datalist[i].shape[0]-int(options.timesteps)+1
|
|
300
|
285
|
|
|
301
|
286
|
testClasses=[0,1,2,3]
|
|
302
|
287
|
|
|
|
@@ -348,7 +333,7 @@ def plotData4():
|
|
348
|
333
|
end+=(testRanges[j+1][1]-testRanges[j+1][0])
|
|
349
|
334
|
|
|
350
|
335
|
#if i==0:
|
|
351
|
|
- # axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
|
|
|
336
|
+ # axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect class "+str(j) )
|
|
352
|
337
|
|
|
353
|
338
|
|
|
354
|
339
|
|
|
|
@@ -364,9 +349,9 @@ def plotData4():
|
|
364
|
349
|
|
|
365
|
350
|
for j in range(NumberOfFailures+1):
|
|
366
|
351
|
if NumFeaturesToPlot==1:
|
|
367
|
|
- axes.plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
|
|
|
352
|
+ axes.plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect class "+str(j) )
|
|
368
|
353
|
else:
|
|
369
|
|
- axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect type "+str(j) )
|
|
|
354
|
+ axes[0].plot(x[j],y[j] ,color=colordot[j],marker='.',markersize=10,linewidth=0,label="Fail detect class "+str(j) )
|
|
370
|
355
|
|
|
371
|
356
|
if NumFeaturesToPlot==1:
|
|
372
|
357
|
axes.legend(ncol=4,loc=(0.1,0.98))
|
|
|
@@ -384,7 +369,7 @@ def whichClass(k,ranges):
|
|
384
|
369
|
print("Error: Class not exists")
|
|
385
|
370
|
exit(0)
|
|
386
|
371
|
|
|
387
|
|
-## It remains to implemenent anomaly metrics for each failure type
|
|
|
372
|
+## implemenent anomaly metrics for each failure class
|
|
388
|
373
|
def anomalyMetric(classes,testranges,testclasses):
|
|
389
|
374
|
# FP, TP: false/true positive
|
|
390
|
375
|
# TN, FN: true/false negative
|
|
|
@@ -423,6 +408,5 @@ def anomalyMetric(classes,testranges,testclasses):
|
|
423
|
408
|
|
|
424
|
409
|
anomalyMetric(classes,testRanges,testClasses)
|
|
425
|
410
|
plotData4()
|
|
426
|
|
-exit(0)
|
|
427
|
411
|
|
|
428
|
412
|
|