123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- # Csar Fdez, UdL, 2025
- import pandas as pd
- import matplotlib.pyplot as plt
- import datetime
- import numpy as np
- import keras
- import os.path
- import pickle
- from keras import layers
- from optparse import OptionParser
-
- # facility type 5. Mural cerrado de congelación (closed freezer). Set point at -18 (we will have two possible setpoints, -18 and -26)
- # This code only deals with a given failure type
- # Data for abnormal functioning corresponds to Condenser Fan failure
-
- parser = OptionParser()
- parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
-
- (options, args) = parser.parse_args()
-
-
- normal_datafiles_list=['2025-01-09_5_','2025-01-10_5_','2025-01-11_5_']
- anormal_datafiles_list=['2025-01-04_5_','2025-01-05_5_','2025-01-06_5_','2025-01-07_5_']
-
- # Features suggested by Xavier
- features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
- NumFeatures=len(features)
-
- df_list=[]
- for f in normal_datafiles_list:
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
- df1 = pd.read_csv('./data/'+f+'.csv')
- df_list.append(df1)
-
- df=pd.concat(df_list)
- datalength=df.shape[0]
- # subsampled to 5' = 30 * 10"
- # We consider smaples every 5' because in production, we will only have data at this frequency
- subsamplingrate=30
- subsamplingrate=30
-
-
- normaldataframe=df.iloc[range(0,datalength,subsamplingrate)][features]
- normaldataframe.reset_index(inplace=True,drop=True)
-
-
- df_list=[]
- for f in anormal_datafiles_list:
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
- df1 = pd.read_csv('./data/'+f+'.csv')
- df_list.append(df1)
-
- df=pd.concat(df_list)
- datalength=df.shape[0]
- # subsampled to 5' = 30 * 10"
- anormaldataframe=df.iloc[range(0,datalength,subsamplingrate)][features]
- anormaldataframe.reset_index(inplace=True,drop=True)
-
-
- # Train data is first 2/3 of normaldata
- # Test data is: last 1/3 of normaldata + anormaldata + last 1/3 of normaldata
- dataTrain=normaldataframe.values[0:int(normaldataframe.shape[0]*2/3),:]
- dataTest=np.vstack((normaldataframe.values[int(normaldataframe.shape[0]*2/3)+1:,:],anormaldataframe.values, normaldataframe.values[int(normaldataframe.shape[0]*2/3)+1:,:] ))
-
-
- def normalize2():
- # merges train and test
- means=[]
- stdevs=[]
- for i in range(NumFeatures):
- means.append(dataTrain[:,i].mean())
- stdevs.append(dataTrain[:,i].std())
- return( (dataTrain-means)/stdevs, (dataTest-means)/stdevs )
-
- (dataTrainNorm,dataTestNorm)=normalize2()
-
- TIME_STEPS = 24
- def create_sequences(values, time_steps=TIME_STEPS):
- output = []
- for i in range(len(values) - time_steps + 1):
- output.append(values[i : (i + time_steps)])
- return np.stack(output)
-
- x_train = create_sequences(dataTrainNorm)
-
- model = keras.Sequential(
- [
- layers.Input(shape=(x_train.shape[1], x_train.shape[2])),
- layers.Conv1D(
- filters=64,
- kernel_size=7,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Dropout(rate=0.2),
- layers.Conv1D(
- filters=32,
- kernel_size=7,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Conv1DTranspose(
- filters=32,
- kernel_size=7,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Dropout(rate=0.2),
- layers.Conv1DTranspose(
- filters=64,
- kernel_size=7,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Conv1DTranspose(filters=x_train.shape[2], kernel_size=7, padding="same"),
- ]
- )
- model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
- model.summary()
-
- path_checkpoint = "model._checkpoint.weights.h5"
- es_callback = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)
-
- modelckpt_callback = keras.callbacks.ModelCheckpoint(
- monitor="val_loss",
- filepath=path_checkpoint,
- verbose=1,
- save_weights_only=True,
- save_best_only=True,
- )
-
-
- if options.train:
- history = model.fit(
- x_train,
- x_train,
- epochs=400,
- batch_size=128,
- validation_split=0.3,
- callbacks=[ es_callback, modelckpt_callback ],
- )
-
- plt.plot(history.history["loss"], label="Training Loss")
- plt.plot(history.history["val_loss"], label="Validation Loss")
- plt.legend()
- plt.show()
- else:
- model.load_weights(path_checkpoint)
-
-
- x_train_pred = model.predict(x_train)
- train_mae_loss = np.mean(np.abs(x_train_pred - x_train), axis=1)
- threshold = np.max(train_mae_loss,axis=0)
-
- print("Threshold : ",threshold)
- threshold=threshold*2
- # Threshold is enlarged because, otherwise, for subsamples at 5' have many false positives
-
- x_test = create_sequences(dataTestNorm)
- x_test_pred = model.predict(x_test)
- test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
-
- anomalies = test_mae_loss > threshold
- anomalous_data_indices = []
- for i in range(anomalies.shape[0]):
- if anomalies[i][0] or anomalies[i][1]:
- anomalous_data_indices.append(i)
-
- #print(anomalous_data_indices)
-
-
- # Let's plot only a couple of features
- def plotData2():
- fig, axes = plt.subplots(
- nrows=2, ncols=1, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
- )
- axes[0].plot(range(len(x_train)),x_train[:,0,0],label="normal")
- axes[0].plot(range(len(x_train),len(x_train)+len(x_test)),x_test[:,0,0],label="abnormal")
- axes[0].plot(len(x_train)+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,0],color='red',marker='.',linewidth=0,label="abnormal detection")
- axes[0].legend()
- axes[1].plot(range(len(x_train)),x_train[:,0,1],label="normal")
- axes[1].plot(range(len(x_train),len(x_train)+len(x_test)),x_test[:,0,1],label="abnormal")
- axes[1].plot(len(x_train)+np.array(anomalous_data_indices),x_test[anomalous_data_indices,0,1],color='red',marker='.',linewidth=0,label="abnormal detection")
- axes[1].legend()
- axes[0].set_ylabel(features[0])
- axes[1].set_ylabel(features[1])
- plt.show()
-
- plotData2()
-
-
|