12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- import pandas as pd
- import matplotlib.pyplot as plt
- import datetime
- import numpy as np
-
- #normal_datafiles_list=['2025-01-08_5_','2025-01-09_5_','2025-01-10_5_','2025-01-11_5_']
- normal_datafiles_list=['2025-01-09_5_','2025-01-10_5_','2025-01-11_5_']
- anormal_datafiles_list=['2025-01-04_5_','2025-01-05_5_','2025-01-06_5_','2025-01-07_5_']
-
- cols=['r1 s1','r1 s4','r1 s5','pa1 apiii']
-
- df_list=[]
- for f in normal_datafiles_list:
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
- df1 = pd.read_csv('./data/'+f+'.csv')
- df_list.append(df1)
-
- df=pd.concat(df_list)
- datalength=df.shape[0]
- # subsampled to 5' = 30 * 10"
- normaldataframe=df.iloc[range(0,datalength,30)][cols]
- normaldataframe.reset_index(inplace=True,drop=True)
- normaldata=normaldataframe.values
-
-
- df_list=[]
- for f in anormal_datafiles_list:
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
- df1 = pd.read_csv('./data/'+f+'.csv')
- df_list.append(df1)
-
- df=pd.concat(df_list)
- datalength=df.shape[0]
- # subsampled to 5' = 30 * 10"
- anormaldataframe=df.iloc[range(0,datalength,30)][cols]
- anormaldataframe.reset_index(inplace=True,drop=True)
- anormaldata=anormaldataframe.values
-
-
- nplots=len(cols)
-
- plt.rcParams.update({'font.size': 10})
- f,ax = plt.subplots(int(np.ceil(nplots/2)),2,figsize=(24,17), dpi=80, facecolor='white', edgecolor='k')
- for i in range(int(np.ceil(nplots/2))):
- for j in range(2):
- r=i*2+j
- if r<nplots:
- ax[i][j].plot(normaldata[:,r],label='normal')
- ax[i][j].plot(anormaldata[:,r],label='abnormal')
- ax[i][j].set_title(anormaldataframe.columns[r])
- ax[i][j].legend()
- plt.show()
|