123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- # Csar Fdez, UdL, 2025
- import pandas as pd
- import matplotlib.pyplot as plt
- import datetime
- import numpy as np
- import keras
- import os.path
- import pickle
- from keras import layers
- from optparse import OptionParser
-
-
- parser = OptionParser()
- parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
-
- (options, args) = parser.parse_args()
-
-
- # data files arrays. Index:
- # 0. No failure
- # 1. Blocked evaporator
- # 2. Full Blocked condenser
- # 3. Partial Blocked condenser
- # 4 Fan condenser not working
- # 5. Open door
-
-
- NumberOfFailures=5
- NumberOfFailures=4 # So far, we have only data for the first 4 types of failures
- datafiles=[]
- for i in range(NumberOfFailures+1):
- datafiles.append([])
-
- # Next set of ddata corresponds to Freezer, SP=-26
- datafiles[0]=['2024-08-07_5_','2024-08-08_5_']
- datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
- datafiles[2]=['2024-12-18_5_','2024-12-19_5_']
- datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
- datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
- #datafiles[4]=[]
-
- # Features suggested by Xavier
- # Care with 'tc s3' because on datafiles[0] is always nulll
- # Seems to be incoropored in new tests
-
- features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
- features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
-
- #features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
-
- NumFeatures=len(features)
-
- df_list=[]
- for i in range(NumberOfFailures+1):
- df_list.append([])
-
- for i in range(NumberOfFailures+1):
- dftemp=[]
- for f in datafiles[i]:
- print(" ", f)
- #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
- df1 = pd.read_csv('./data/'+f+'.csv')
- dftemp.append(df1)
- df_list[i]=pd.concat(dftemp)
-
-
- # subsampled to 5' = 30 * 10"
- # We consider smaples every 5' because in production, we will only have data at this frequency
- subsamplingrate=30
-
- dataframe=[]
- for i in range(NumberOfFailures+1):
- dataframe.append([])
-
- for i in range(NumberOfFailures+1):
- datalength=df_list[i].shape[0]
- dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
- dataframe[i].reset_index(inplace=True,drop=True)
- dataframe[i].dropna(inplace=True)
-
-
- # Train data is first 2/3 of data
- # Test data is: last 1/3 of data
- dataTrain=[]
- dataTest=[]
- for i in range(NumberOfFailures+1):
- dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
- dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
-
-
- def normalize2(train,test):
- # merges train and test
- means=[]
- stdevs=[]
- for i in range(NumFeatures):
- means.append(train[:,i].mean())
- stdevs.append(train[:,i].std())
- return( (train-means)/stdevs, (test-means)/stdevs )
-
- dataTrainNorm=[]
- dataTestNorm=[]
- for i in range(NumberOfFailures+1):
- dataTrainNorm.append([])
- dataTestNorm.append([])
-
- for i in range(NumberOfFailures+1):
- (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
-
- def plotData():
- fig, axes = plt.subplots(
- nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
- )
- for i in range(NumberOfFailures+1):
- axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
- axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
- #axes[1].legend()
- #axes[0].set_ylabel(features[0])
- #axes[1].set_ylabel(features[1])
- #plt.show()
-
- #plotData()
-
-
- NumFilters=64
- KernelSize=7
- DropOut=0.1
- ThresholdFactor=1.7
- TIME_STEPS = 48 # This is a trade off among better performance (high) and better response delay (low)
- def create_sequences(values, time_steps=TIME_STEPS):
- output = []
- for i in range(len(values) - time_steps + 1):
- output.append(values[i : (i + time_steps)])
- return np.stack(output)
-
- x_train=[]
- for i in range(NumberOfFailures+1):
- x_train.append(create_sequences(dataTrainNorm[i]))
-
-
- # Reused code from v1_multifailure for only one model. No classification
- #for i in range(NumberOfFailures+1):
- model = keras.Sequential(
- [
- layers.Input(shape=(x_train[0].shape[1], x_train[0].shape[2])),
- layers.Conv1D(
- filters=NumFilters,
- kernel_size=7,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Dropout(rate=DropOut),
- layers.Conv1D(
- filters=int(NumFilters/2),
- kernel_size=KernelSize,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Conv1DTranspose(
- filters=int(NumFilters/2),
- kernel_size=KernelSize,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Dropout(rate=DropOut),
- layers.Conv1DTranspose(
- filters=NumFilters,
- kernel_size=KernelSize,
- padding="same",
- strides=2,
- activation="relu",
- ),
- layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"),
- ]
- )
- model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
- model.summary()
- path_checkpoint="model_noclass_v1_checkpoint.weights.h5"
- es_callback=keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)
- modelckpt_callback=keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint, verbose=1, save_weights_only=True, save_best_only=True,)
-
-
- if options.train:
- history=model.fit( x_train[0], x_train[0], epochs=400, batch_size=128, validation_split=0.3, callbacks=[ es_callback, modelckpt_callback ],)
- else:
- model.load_weights(path_checkpoint)
-
-
- x_train_pred=model.predict(x_train[0])
- train_mae_loss=np.mean(np.abs(x_train_pred - x_train[0]), axis=1)
- threshold=np.max(train_mae_loss,axis=0)
-
- print("Threshold : ",threshold)
- threshold=threshold*ThresholdFactor
- # Threshold is enlarged because, otherwise, for subsamples at 5' have many false positives
-
-
- # 1st scenario. Detect only anomaly. Later, we will classiffy it
- # Test data= testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
- d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4],dataTestNorm[0]))
-
- x_test = create_sequences(d)
- x_test_pred = model.predict(x_test)
- test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
-
-
- # Define ranges for plotting in different colors
- testRanges=[]
- r=dataTestNorm[0].shape[0]
- testRanges.append([0,r])
- for i in range(1,NumberOfFailures+1):
- rnext=r+dataTestNorm[i].shape[0]
- testRanges.append([r,rnext] )
- r=rnext
-
- testRanges.append([r, x_test.shape[0]+TIME_STEPS ])
-
-
- def AtLeastOneTrue(x):
- for i in range(NumFeatures):
- if x[i]:
- return True
- return False
-
- anomalies = test_mae_loss > threshold
- anomalous_data_indices = []
- for i in range(anomalies.shape[0]):
- if AtLeastOneTrue(anomalies[i]):
- #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
- anomalous_data_indices.append(i)
-
- #print(anomalous_data_indices)
-
-
- # Let's plot some features
-
- colorline=['violet','lightcoral','cyan','lime','grey']
- colordot=['darkviolet','red','blue','green','black']
-
- featuresToPlot=['r1 s1','r1 s2','r1 s3','pa1 apiii']
- #featuresToPlot=features
-
- indexesToPlot=[]
- for i in featuresToPlot:
- indexesToPlot.append(features.index(i))
-
- def plotData2():
- NumFeaturesToPlot=len(indexesToPlot)
- fig, axes = plt.subplots(
- nrows=NumFeaturesToPlot, ncols=1, figsize=(25, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
- )
- for i in range(NumFeaturesToPlot):
- init=0
- end=len(x_train[0])
- axes[i].plot(range(init,end),x_train[0][:,0,indexesToPlot[i]],label="normal train")
- init=end
- end+=testRanges[0][1]
- axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],label="normal test")
- init=end
- end+=(testRanges[1][1]-testRanges[1][0])
- for j in range(1,NumberOfFailures+1):
- axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]],label="fail type "+str(j), color=colorline[j-1])
- init=end
- end+=(testRanges[j+1][1]-testRanges[j+1][0])
- # Shift TIME_STEPS because detection is performed at the end of time serie
- trail=np.hstack((x_test[:,0,indexesToPlot[i]], x_test[-1:,1:TIME_STEPS,indexesToPlot[i]].reshape(TIME_STEPS-1)))
- axes[i].plot(len(x_train[0])+np.array(anomalous_data_indices)+TIME_STEPS,trail[np.array(anomalous_data_indices)+TIME_STEPS],color='grey',marker='.',linewidth=0,label="abnormal detection" )
-
- init=end-(testRanges[NumberOfFailures+1][1]-testRanges[NumberOfFailures+1][0])
- end=init+(testRanges[0][1]-testRanges[0][0])
- axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]],color='orange')
-
- if i==0:
- axes[i].legend(bbox_to_anchor=(1, 0.5))
- axes[i].set_ylabel(features[indexesToPlot[i]])
- axes[i].grid()
- plt.show()
-
-
- def anomalyMetric(testList): # first of list is non failure data
- # FP, TP: false/true positive
- # TN, FN: true/false negative
- # Sensitivity: probab failure detection if data is fail: TP/(TP+FN)
- # Specificity: true negative ratio given data is OK: TN/(TN+FP)
-
- x_test = create_sequences(testList[0])
- x_test_pred = model.predict(x_test)
- test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
- anomalies = test_mae_loss > threshold
- count=0
- for i in range(anomalies.shape[0]):
- if AtLeastOneTrue(anomalies[i]):
- count+=1
- FP=count
- TN=anomalies.shape[0]-count
- count=0
- TP=np.zeros((NumberOfFailures))
- FN=np.zeros((NumberOfFailures))
- for i in range(1,len(testList)):
- x_test = create_sequences(testList[i])
- x_test_pred = model.predict(x_test)
- test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
- anomalies = test_mae_loss > threshold
- count=0
- for j in range(anomalies.shape[0]):
- if AtLeastOneTrue(anomalies[j]):
- count+=1
- TP[i-1] = count
- FN[i-1] = anomalies.shape[0]-count
- Sensitivity=TP.sum()/(TP.sum()+FN.sum())
- Specifity=TN/(TN+FP)
- print("Sensitivity: ",Sensitivity)
- print("Specifity: ",Specifity)
- print("FP: ",FP)
- return Sensitivity+Specifity
-
- anomalyMetric([dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]])
- plotData2()
|