|
@@ -0,0 +1,745 @@
|
|
1
|
+# Csar Fdez, UdL, 2025
|
|
2
|
+# Changes from v1: Normalization
|
|
3
|
+# IN v1, each failure type has its own normalization pars (mean and stdevs)
|
|
4
|
+# In v2, mean and stdev is the same for all data
|
|
5
|
+# v3.py trains the models looping in TIME_STEPS (4,8,12,16,20,24,....) finding the optimal Threshold factor
|
|
6
|
+import pandas as pd
|
|
7
|
+import matplotlib.pyplot as plt
|
|
8
|
+import datetime
|
|
9
|
+import numpy as np
|
|
10
|
+import keras
|
|
11
|
+import os.path
|
|
12
|
+from keras import layers
|
|
13
|
+from optparse import OptionParser
|
|
14
|
+import copy
|
|
15
|
+import pickle
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+parser = OptionParser()
|
|
19
|
+parser.add_option("-t", "--train", dest="train", help="Trains the models (false)", default=False, action="store_true")
|
|
20
|
+parser.add_option("-o", "--optimizetf", dest="optimizetf", help="Optimzes Threshold Factor (false)", default=False, action="store_true")
|
|
21
|
+parser.add_option("-n", "--timesteps", dest="timesteps", help="TIME STEPS ", default=12)
|
|
22
|
+parser.add_option("-f", "--thresholdfactor", dest="TF", help="Threshold Factor ", default=1.4)
|
|
23
|
+
|
|
24
|
+(options, args) = parser.parse_args()
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+# data files arrays. Index:
|
|
28
|
+# 0. No failure
|
|
29
|
+# 1. Blocked evaporator
|
|
30
|
+# 2. Full Blocked condenser
|
|
31
|
+# 3. Partial Blocked condenser
|
|
32
|
+# 4 Fan condenser not working
|
|
33
|
+# 5. Open door
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+NumberOfFailures=4 # So far, we have only data for the first 4 types of failures
|
|
37
|
+datafiles=[]
|
|
38
|
+for i in range(NumberOfFailures+1):
|
|
39
|
+ datafiles.append([])
|
|
40
|
+
|
|
41
|
+# Next set of ddata corresponds to Freezer, SP=-26
|
|
42
|
+datafiles[0]=['2024-08-07_5_','2024-08-08_5_','2025-01-25_5_','2025-01-26_5_','2025-01-27_5_','2025-01-28_5_']
|
|
43
|
+datafiles[1]=['2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_']
|
|
44
|
+#datafiles[1]=['2024-12-17_5_','2024-12-16_5_','2024-12-11_5_', '2024-12-12_5_','2024-12-13_5_','2024-12-14_5_','2024-12-15_5_'] # This have transitions
|
|
45
|
+datafiles[2]=['2024-12-18_5_','2024-12-19_5_']
|
|
46
|
+datafiles[3]=['2024-12-21_5_','2024-12-22_5_','2024-12-23_5_','2024-12-24_5_','2024-12-25_5_','2024-12-26_5_']
|
|
47
|
+datafiles[4]=['2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_']
|
|
48
|
+#datafiles[4]=['2024-12-27_5_','2024-12-28_5_','2024-12-29_5_','2024-12-30_5_','2024-12-31_5_','2025-01-01_5_'] # This have transitions
|
|
49
|
+
|
|
50
|
+#datafiles[4]=[]
|
|
51
|
+
|
|
52
|
+# Features suggested by Xavier
|
|
53
|
+# Care with 'tc s3' because on datafiles[0] is always nulll
|
|
54
|
+# Seems to be incoropored in new tests
|
|
55
|
+
|
|
56
|
+#r1s5 supply air flow temperature
|
|
57
|
+#r1s1 inlet evaporator temperature
|
|
58
|
+#r1s4 condenser outlet
|
|
59
|
+
|
|
60
|
+# VAriables r1s4 and pa1 apiii may not exists in cloud controlers
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+features=['r1 s1','r1 s4','r1 s5','pa1 apiii']
|
|
64
|
+features=['r1 s1','r1 s4','r1 s5']
|
|
65
|
+featureNames={}
|
|
66
|
+featureNames['r1 s1']='$T_{evap}$'
|
|
67
|
+featureNames['r1 s4']='$T_{cond}$'
|
|
68
|
+featureNames['r1 s5']='$T_{air}$'
|
|
69
|
+featureNames['pa1 apiii']='$P_{elec}$'
|
|
70
|
+
|
|
71
|
+unitNames={}
|
|
72
|
+unitNames['r1 s1']='$(^{o}C)$'
|
|
73
|
+unitNames['r1 s4']='$(^{o}C)$'
|
|
74
|
+unitNames['r1 s5']='$(^{o}C)$'
|
|
75
|
+unitNames['pa1 apiii']='$(W)$'
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+#features=['r1 s1','r1 s2','r1 s3','r1 s4','r1 s5','r1 s6','r1 s7','r1 s8','r1 s9','r1 s10','r2 s1','r2 s2','r2 s3','r2 s4','r2 s5','r2 s6','r2 s7','r2 s8','r2 s9','pa1 apiii','tc s1','tc s2']
|
|
79
|
+
|
|
80
|
+#features=['r2 s2', 'tc s1','r1 s10','r1 s6','r2 s8']
|
|
81
|
+
|
|
82
|
+NumFeatures=len(features)
|
|
83
|
+
|
|
84
|
+df_list=[]
|
|
85
|
+for i in range(NumberOfFailures+1):
|
|
86
|
+ df_list.append([])
|
|
87
|
+
|
|
88
|
+for i in range(NumberOfFailures+1):
|
|
89
|
+ dftemp=[]
|
|
90
|
+ for f in datafiles[i]:
|
|
91
|
+ print(" ", f)
|
|
92
|
+ #df1 = pd.read_csv('./data/'+f+'.csv', parse_dates=['datetime'], dayfirst=True, index_col='datetime')
|
|
93
|
+ df1 = pd.read_csv('./data/'+f+'.csv')
|
|
94
|
+ dftemp.append(df1)
|
|
95
|
+ df_list[i]=pd.concat(dftemp)
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+# subsampled to 5' = 30 * 10"
|
|
99
|
+# We consider smaples every 5' because in production, we will only have data at this frequency
|
|
100
|
+subsamplingrate=30
|
|
101
|
+
|
|
102
|
+dataframe=[]
|
|
103
|
+for i in range(NumberOfFailures+1):
|
|
104
|
+ dataframe.append([])
|
|
105
|
+
|
|
106
|
+for i in range(NumberOfFailures+1):
|
|
107
|
+ datalength=df_list[i].shape[0]
|
|
108
|
+ dataframe[i]=df_list[i].iloc[range(0,datalength,subsamplingrate)][features]
|
|
109
|
+ dataframe[i].reset_index(inplace=True,drop=True)
|
|
110
|
+ dataframe[i].dropna(inplace=True)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+# Train data is first 2/3 of data
|
|
114
|
+# Test data is: last 1/3 of data
|
|
115
|
+dataTrain=[]
|
|
116
|
+dataTest=[]
|
|
117
|
+for i in range(NumberOfFailures+1):
|
|
118
|
+ dataTrain.append(dataframe[i].values[0:int(dataframe[i].shape[0]*2/3),:])
|
|
119
|
+ dataTest.append(dataframe[i].values[int(dataframe[i].shape[0]*2/3):,:])
|
|
120
|
+
|
|
121
|
+# Calculate means and stdev
|
|
122
|
+a=dataTrain[0]
|
|
123
|
+for i in range(1,NumberOfFailures+1):
|
|
124
|
+ a=np.vstack((a,dataTrain[i]))
|
|
125
|
+
|
|
126
|
+means=a.mean(axis=0)
|
|
127
|
+stdevs=a.std(axis=0)
|
|
128
|
+def normalize2(train,test):
|
|
129
|
+ return( (train-means)/stdevs, (test-means)/stdevs )
|
|
130
|
+
|
|
131
|
+dataTrainNorm=[]
|
|
132
|
+dataTestNorm=[]
|
|
133
|
+for i in range(NumberOfFailures+1):
|
|
134
|
+ dataTrainNorm.append([])
|
|
135
|
+ dataTestNorm.append([])
|
|
136
|
+
|
|
137
|
+for i in range(NumberOfFailures+1):
|
|
138
|
+ (dataTrainNorm[i],dataTestNorm[i])=normalize2(dataTrain[i],dataTest[i])
|
|
139
|
+
|
|
140
|
+def plotData():
|
|
141
|
+ fig, axes = plt.subplots(
|
|
142
|
+ nrows=NumberOfFailures+1, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
143
|
+ )
|
|
144
|
+ for i in range(NumberOfFailures+1):
|
|
145
|
+ axes[i][0].plot(np.concatenate((dataTrainNorm[i][:,0],dataTestNorm[i][:,0])),label="Fail "+str(i)+", feature 0")
|
|
146
|
+ axes[i][1].plot(np.concatenate((dataTrainNorm[i][:,1],dataTestNorm[i][:,1])),label="Fail "+str(i)+", feature 1")
|
|
147
|
+ #axes[1].legend()
|
|
148
|
+ #axes[0].set_ylabel(features[0])
|
|
149
|
+ #axes[1].set_ylabel(features[1])
|
|
150
|
+ plt.show()
|
|
151
|
+
|
|
152
|
+#plotData()
|
|
153
|
+#exit(0)
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+NumFilters=64
|
|
157
|
+KernelSize=7
|
|
158
|
+DropOut=0.2
|
|
159
|
+ThresholdFactor=1.4
|
|
160
|
+def create_sequences(values, time_steps):
|
|
161
|
+ output = []
|
|
162
|
+ for i in range(len(values) - time_steps + 1):
|
|
163
|
+ output.append(values[i : (i + time_steps)])
|
|
164
|
+ return np.stack(output)
|
|
165
|
+
|
|
166
|
+def AtLeastOneTrue(x):
|
|
167
|
+ for i in range(NumFeatures):
|
|
168
|
+ if x[i]:
|
|
169
|
+ return True
|
|
170
|
+ return False
|
|
171
|
+
|
|
172
|
+def anomalyMetric(th,ts,testList): # first of list is non failure data
|
|
173
|
+ # FP, TP: false/true positive
|
|
174
|
+ # TN, FN: true/false negative
|
|
175
|
+ # Sensitivity (recall): probab failure detection if data is fail: TP/(TP+FN)
|
|
176
|
+ # Specificity: true negative ratio given data is OK: TN/(TN+FP)
|
|
177
|
+ # Accuracy: Rate of correct predictions: (TN+TP)/(TN+TP+FP+FN)
|
|
178
|
+ # Precision: Rate of positive results: TP/(TP+FP)
|
|
179
|
+ # F1-score: predictive performance measure: 2*Precision*Sensitity/(Precision+Sensitity)
|
|
180
|
+ # F2-score: predictive performance measure: 2*Specificity*Sensitity/(Specificity+Sensitity)
|
|
181
|
+
|
|
182
|
+ x_test = create_sequences(testList[0],ts)
|
|
183
|
+ x_test_pred = model.predict(x_test)
|
|
184
|
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
185
|
+ anomalies = test_mae_loss > th
|
|
186
|
+ count=0
|
|
187
|
+ for i in range(anomalies.shape[0]):
|
|
188
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
189
|
+ count+=1
|
|
190
|
+ FP=count
|
|
191
|
+ TN=anomalies.shape[0]-count
|
|
192
|
+ count=0
|
|
193
|
+ TP=np.zeros((NumberOfFailures))
|
|
194
|
+ FN=np.zeros((NumberOfFailures))
|
|
195
|
+ Sensitivity=np.zeros((NumberOfFailures))
|
|
196
|
+ Precision=np.zeros((NumberOfFailures))
|
|
197
|
+ for i in range(1,len(testList)):
|
|
198
|
+ x_test = create_sequences(testList[i],ts)
|
|
199
|
+ x_test_pred = model.predict(x_test)
|
|
200
|
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
201
|
+ anomalies = test_mae_loss > th
|
|
202
|
+ count=0
|
|
203
|
+ for j in range(anomalies.shape[0]):
|
|
204
|
+ if AtLeastOneTrue(anomalies[j]):
|
|
205
|
+ count+=1
|
|
206
|
+ TP[i-1] = count
|
|
207
|
+ FN[i-1] = anomalies.shape[0]-count
|
|
208
|
+ Sensitivity[i-1]=TP[i-1]/(TP[i-1]+FN[i-1])
|
|
209
|
+ Precision[i-1]=TP[i-1]/(TP[i-1]+FP)
|
|
210
|
+
|
|
211
|
+ GlobalSensitivity=TP.sum()/(TP.sum()+FN.sum())
|
|
212
|
+ Specificity=TN/(TN+FP)
|
|
213
|
+ Accuracy=(TN+TP.sum())/(TN+TP.sum()+FP+FN.sum())
|
|
214
|
+ GlobalPrecision=TP.sum()/(TP.sum()+FP)
|
|
215
|
+ F1Score= 2*GlobalPrecision*GlobalSensitivity/(GlobalPrecision+GlobalSensitivity)
|
|
216
|
+ F2Score = 2*Specificity*GlobalSensitivity/(Specificity+GlobalSensitivity)
|
|
217
|
+
|
|
218
|
+ print("Sensitivity: ",Sensitivity)
|
|
219
|
+ print("Global Sensitivity: ",GlobalSensitivity)
|
|
220
|
+ #print("Precision: ",Precision)
|
|
221
|
+ #print("Global Precision: ",GlobalPrecision)
|
|
222
|
+ print("Specifity: ",Specificity)
|
|
223
|
+ #print("Accuracy: ",Accuracy)
|
|
224
|
+ #print("F1Score: ",F1Score)
|
|
225
|
+ print("F2Score: ",F2Score)
|
|
226
|
+ #print("FP: ",FP)
|
|
227
|
+ #return Sensitivity+Specifity
|
|
228
|
+ return F2Score
|
|
229
|
+
|
|
230
|
+FScoreHash={}
|
|
231
|
+threshold={}
|
|
232
|
+def getFScore(timestep,datalist):
|
|
233
|
+ FScoreHash[timestep]=[]
|
|
234
|
+ # plots FSCore as a function of Threshold Factor
|
|
235
|
+ tf=0.3
|
|
236
|
+ while tf<8:
|
|
237
|
+ th=threshold[timestep]*tf
|
|
238
|
+ r=anomalyMetric(th,timestep,datalist)
|
|
239
|
+ FScoreHash[timestep].append([tf,r])
|
|
240
|
+ if tf<2:
|
|
241
|
+ tf+=0.1
|
|
242
|
+ else:
|
|
243
|
+ tf+=0.5
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+def plotFScore(FS):
|
|
247
|
+ plt.rcParams.update({'font.size': 16})
|
|
248
|
+ fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(14, 10), dpi=80, facecolor="w", edgecolor="k")
|
|
249
|
+ for k in FS.keys():
|
|
250
|
+ ar=np.array((FS[k]))
|
|
251
|
+ axes.plot(ar[:,0],ar[:,1],label="$ns=$"+str(k),linewidth=3)
|
|
252
|
+ axes.set_xlabel("Threshold factor ($TF$)")
|
|
253
|
+ axes.set_ylabel("FScore")
|
|
254
|
+ axes.legend()
|
|
255
|
+ axes.grid()
|
|
256
|
+ s='['
|
|
257
|
+ for i in range(len(features)):
|
|
258
|
+ s+=featureNames[features[i]]
|
|
259
|
+ if i < len(features)-1:
|
|
260
|
+ s+=', '
|
|
261
|
+ s+=']'
|
|
262
|
+ plt.title(s)
|
|
263
|
+ plt.show()
|
|
264
|
+
|
|
265
|
+def listToString(l):
|
|
266
|
+ r=''
|
|
267
|
+ for i in l:
|
|
268
|
+ r+=str(i)
|
|
269
|
+ return(r.replace(' ',''))
|
|
270
|
+
|
|
271
|
+if options.train:
|
|
272
|
+ for timesteps in range(4,21,4):
|
|
273
|
+ x_train=[]
|
|
274
|
+ for i in range(NumberOfFailures+1):
|
|
275
|
+ x_train.append(create_sequences(dataTrainNorm[i],timesteps))
|
|
276
|
+
|
|
277
|
+ model = keras.Sequential(
|
|
278
|
+ [
|
|
279
|
+ layers.Input(shape=(x_train[0].shape[1], x_train[0].shape[2])),
|
|
280
|
+ layers.Conv1D(
|
|
281
|
+ filters=NumFilters,
|
|
282
|
+ kernel_size=KernelSize,
|
|
283
|
+ padding="same",
|
|
284
|
+ strides=2,
|
|
285
|
+ activation="relu",
|
|
286
|
+ ),
|
|
287
|
+ layers.Dropout(rate=DropOut),
|
|
288
|
+ layers.Conv1D(
|
|
289
|
+ filters=int(NumFilters/2),
|
|
290
|
+ kernel_size=KernelSize,
|
|
291
|
+ padding="same",
|
|
292
|
+ strides=2,
|
|
293
|
+ activation="relu",
|
|
294
|
+ ),
|
|
295
|
+ layers.Conv1DTranspose(
|
|
296
|
+ filters=int(NumFilters/2),
|
|
297
|
+ kernel_size=KernelSize,
|
|
298
|
+ padding="same",
|
|
299
|
+ strides=2,
|
|
300
|
+ activation="relu",
|
|
301
|
+ ),
|
|
302
|
+ layers.Dropout(rate=DropOut),
|
|
303
|
+ layers.Conv1DTranspose(
|
|
304
|
+ filters=NumFilters,
|
|
305
|
+ kernel_size=KernelSize,
|
|
306
|
+ padding="same",
|
|
307
|
+ strides=2,
|
|
308
|
+ activation="relu",
|
|
309
|
+ ),
|
|
310
|
+ layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"),
|
|
311
|
+ ]
|
|
312
|
+ )
|
|
313
|
+ model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
|
|
314
|
+ model.summary()
|
|
315
|
+ path_checkpoint="model_noclass_v2_"+str(timesteps)+listToString(features)+"_checkpoint.weights.h5"
|
|
316
|
+ es_callback=keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)
|
|
317
|
+ modelckpt_callback=keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint, verbose=1, save_weights_only=True, save_best_only=True,)
|
|
318
|
+
|
|
319
|
+ history=model.fit( x_train[0], x_train[0], epochs=400, batch_size=128, validation_split=0.3, callbacks=[ es_callback, modelckpt_callback ],)
|
|
320
|
+
|
|
321
|
+ x_train_pred=model.predict(x_train[0])
|
|
322
|
+ train_mae_loss=np.mean(np.abs(x_train_pred - x_train[0]), axis=1)
|
|
323
|
+ threshold[timesteps]=np.max(train_mae_loss,axis=0)
|
|
324
|
+ file = open('threshold'+listToString(features)+'.pk', 'wb')
|
|
325
|
+ pickle.dump(threshold, file)
|
|
326
|
+ file.close()
|
|
327
|
+ exit(0)
|
|
328
|
+else:
|
|
329
|
+ file = open('threshold'+listToString(features)+'.pk', 'rb')
|
|
330
|
+ threshold=pickle.load(file)
|
|
331
|
+ file.close()
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+ x_train=[]
|
|
335
|
+ for i in range(NumberOfFailures+1):
|
|
336
|
+ x_train.append(create_sequences(dataTrainNorm[i],int(options.timesteps)))
|
|
337
|
+
|
|
338
|
+ model = keras.Sequential(
|
|
339
|
+ [
|
|
340
|
+ layers.Input(shape=(x_train[0].shape[1], x_train[0].shape[2])),
|
|
341
|
+ layers.Conv1D(
|
|
342
|
+ filters=NumFilters,
|
|
343
|
+ kernel_size=KernelSize,
|
|
344
|
+ padding="same",
|
|
345
|
+ strides=2,
|
|
346
|
+ activation="relu",
|
|
347
|
+ ),
|
|
348
|
+ layers.Dropout(rate=DropOut),
|
|
349
|
+ layers.Conv1D(
|
|
350
|
+ filters=int(NumFilters/2),
|
|
351
|
+ kernel_size=KernelSize,
|
|
352
|
+ padding="same",
|
|
353
|
+ strides=2,
|
|
354
|
+ activation="relu",
|
|
355
|
+ ),
|
|
356
|
+ layers.Conv1DTranspose(
|
|
357
|
+ filters=int(NumFilters/2),
|
|
358
|
+ kernel_size=KernelSize,
|
|
359
|
+ padding="same",
|
|
360
|
+ strides=2,
|
|
361
|
+ activation="relu",
|
|
362
|
+ ),
|
|
363
|
+ layers.Dropout(rate=DropOut),
|
|
364
|
+ layers.Conv1DTranspose(
|
|
365
|
+ filters=NumFilters,
|
|
366
|
+ kernel_size=KernelSize,
|
|
367
|
+ padding="same",
|
|
368
|
+ strides=2,
|
|
369
|
+ activation="relu",
|
|
370
|
+ ),
|
|
371
|
+ layers.Conv1DTranspose(filters=x_train[i].shape[2], kernel_size=KernelSize, padding="same"),
|
|
372
|
+ ]
|
|
373
|
+ )
|
|
374
|
+ model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
|
|
375
|
+ model.summary()
|
|
376
|
+
|
|
377
|
+
|
|
378
|
+ if options.optimizetf:
|
|
379
|
+ for timesteps in range(4,21,4):
|
|
380
|
+ path_checkpoint="model_noclass_v2_"+str(timesteps)+listToString(features)+"_checkpoint.weights.h5"
|
|
381
|
+ es_callback=keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)
|
|
382
|
+ modelckpt_callback=keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint, verbose=1, save_weights_only=True, save_best_only=True,)
|
|
383
|
+ model.load_weights(path_checkpoint)
|
|
384
|
+ getFScore(timesteps,[dataTestNorm[0],dataTrainNorm[1],dataTrainNorm[2],dataTrainNorm[3],dataTrainNorm[4]])
|
|
385
|
+ file = open('FScore'+listToString(features)+'.pk', 'wb')
|
|
386
|
+ pickle.dump(FScoreHash, file)
|
|
387
|
+ file.close()
|
|
388
|
+
|
|
389
|
+
|
|
390
|
+ path_checkpoint="model_noclass_v2_"+str(options.timesteps)+listToString(features)+"_checkpoint.weights.h5"
|
|
391
|
+ es_callback=keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)
|
|
392
|
+ modelckpt_callback=keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint, verbose=1, save_weights_only=True, save_best_only=True,)
|
|
393
|
+ model.load_weights(path_checkpoint)
|
|
394
|
+
|
|
395
|
+
|
|
396
|
+ file = open('FScore'+listToString(features)+'.pk', 'rb')
|
|
397
|
+ FS=pickle.load(file)
|
|
398
|
+ file.close()
|
|
399
|
+
|
|
400
|
+
|
|
401
|
+ #plotFScore(FS)
|
|
402
|
+ #exit(0)
|
|
403
|
+
|
|
404
|
+TIME_STEPS=int(options.timesteps)
|
|
405
|
+# 1st scenario. Detect only anomaly. Later, we will classiffy it
|
|
406
|
+# Test data= testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
|
|
407
|
+#d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4],dataTestNorm[0]))
|
|
408
|
+# For Failure data, we can use Train data becasue not used for training and includes the firsts samples
|
|
409
|
+#datalist=[dataTestNorm[0],dataTrainNorm[1],dataTrainNorm[2],dataTrainNorm[3],dataTrainNorm[4]]
|
|
410
|
+datalist=[dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4]]
|
|
411
|
+d=np.vstack((datalist))
|
|
412
|
+
|
|
413
|
+x_test = create_sequences(d,int(options.timesteps))
|
|
414
|
+x_test_pred = model.predict(x_test)
|
|
415
|
+test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
416
|
+
|
|
417
|
+
|
|
418
|
+# Define ranges for plotting in different colors
|
|
419
|
+testRanges=[]
|
|
420
|
+
|
|
421
|
+r=0
|
|
422
|
+for i in range(len(datalist)):
|
|
423
|
+ testRanges.append([r,r+datalist[i].shape[0]])
|
|
424
|
+ r+=datalist[i].shape[0]
|
|
425
|
+
|
|
426
|
+#r=dataTestNorm[0].shape[0]
|
|
427
|
+#testRanges.append([0,r])
|
|
428
|
+#for i in range(1,NumberOfFailures+1):
|
|
429
|
+# rnext=r+dataTrainNorm[i].shape[0]
|
|
430
|
+# testRanges.append([r,rnext] )
|
|
431
|
+# r=rnext
|
|
432
|
+
|
|
433
|
+# Drop the last TIME_STEPS for plotting
|
|
434
|
+testRanges[NumberOfFailures][1]=testRanges[NumberOfFailures][1]-TIME_STEPS
|
|
435
|
+
|
|
436
|
+
|
|
437
|
+anomalies = test_mae_loss > threshold[int(options.timesteps)]*float(options.TF)
|
|
438
|
+anomalous_data_indices = []
|
|
439
|
+for i in range(anomalies.shape[0]):
|
|
440
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
441
|
+ #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
|
|
442
|
+ anomalous_data_indices.append(i)
|
|
443
|
+
|
|
444
|
+# Let's plot some features
|
|
445
|
+
|
|
446
|
+colorline=['violet','lightcoral','cyan','lime','grey']
|
|
447
|
+colordot=['darkviolet','red','blue','green','black']
|
|
448
|
+
|
|
449
|
+#featuresToPlot=['r1 s1','r1 s2','r1 s3','pa1 apiii']
|
|
450
|
+featuresToPlot=features
|
|
451
|
+
|
|
452
|
+indexesToPlot=[]
|
|
453
|
+for i in featuresToPlot:
|
|
454
|
+ indexesToPlot.append(features.index(i))
|
|
455
|
+
|
|
456
|
+def plotData3():
|
|
457
|
+ NumFeaturesToPlot=len(indexesToPlot)
|
|
458
|
+ plt.rcParams.update({'font.size': 16})
|
|
459
|
+ fig, axes = plt.subplots(
|
|
460
|
+ nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
461
|
+ )
|
|
462
|
+ for i in range(NumFeaturesToPlot):
|
|
463
|
+ init=0
|
|
464
|
+ end=testRanges[0][1]
|
|
465
|
+ axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="No fail")
|
|
466
|
+ init=end
|
|
467
|
+ end+=(testRanges[1][1]-testRanges[1][0])
|
|
468
|
+ for j in range(1,NumberOfFailures+1):
|
|
469
|
+ axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Fail type "+str(j), color=colorline[j-1])
|
|
470
|
+ if j<NumberOfFailures:
|
|
471
|
+ init=end
|
|
472
|
+ end+=(testRanges[j+1][1]-testRanges[j+1][0])
|
|
473
|
+ x=[]
|
|
474
|
+ y=[]
|
|
475
|
+ for k in anomalous_data_indices:
|
|
476
|
+ if (k+TIME_STEPS)<x_test.shape[0]:
|
|
477
|
+ x.append(k+TIME_STEPS)
|
|
478
|
+ y.append(x_test[k+TIME_STEPS,0,indexesToPlot[i]]*stdevs[i]+means[i])
|
|
479
|
+ axes[i].plot(x,y ,color='grey',marker='.',linewidth=0,label="Fail detection" )
|
|
480
|
+
|
|
481
|
+ if i==(NumFeatures-1):
|
|
482
|
+ axes[i].legend(loc='right')
|
|
483
|
+ s=''
|
|
484
|
+ s+=featureNames[features[indexesToPlot[i]]]
|
|
485
|
+ s+=' '+unitNames[features[indexesToPlot[i]]]
|
|
486
|
+ axes[i].set_ylabel(s)
|
|
487
|
+ axes[i].grid()
|
|
488
|
+ axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
|
|
489
|
+ plt.show()
|
|
490
|
+
|
|
491
|
+
|
|
492
|
+anomalyMetric(threshold[int(options.timesteps)]*float(options.TF), int(options.timesteps),datalist)
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+#plotData3()
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+def plotData5():
|
|
499
|
+ model1 = keras.Sequential(
|
|
500
|
+ [
|
|
501
|
+ layers.Input(shape=(4, 3)),
|
|
502
|
+ layers.Conv1D(
|
|
503
|
+ filters=NumFilters,
|
|
504
|
+ kernel_size=KernelSize,
|
|
505
|
+ padding="same",
|
|
506
|
+ strides=2,
|
|
507
|
+ activation="relu",
|
|
508
|
+ ),
|
|
509
|
+ layers.Dropout(rate=DropOut),
|
|
510
|
+ layers.Conv1D(
|
|
511
|
+ filters=int(NumFilters/2),
|
|
512
|
+ kernel_size=KernelSize,
|
|
513
|
+ padding="same",
|
|
514
|
+ strides=2,
|
|
515
|
+ activation="relu",
|
|
516
|
+ ),
|
|
517
|
+ layers.Conv1DTranspose(
|
|
518
|
+ filters=int(NumFilters/2),
|
|
519
|
+ kernel_size=KernelSize,
|
|
520
|
+ padding="same",
|
|
521
|
+ strides=2,
|
|
522
|
+ activation="relu",
|
|
523
|
+ ),
|
|
524
|
+ layers.Dropout(rate=DropOut),
|
|
525
|
+ layers.Conv1DTranspose(
|
|
526
|
+ filters=NumFilters,
|
|
527
|
+ kernel_size=KernelSize,
|
|
528
|
+ padding="same",
|
|
529
|
+ strides=2,
|
|
530
|
+ activation="relu",
|
|
531
|
+ ),
|
|
532
|
+ layers.Conv1DTranspose(filters=3, kernel_size=KernelSize, padding="same"),
|
|
533
|
+ ]
|
|
534
|
+ )
|
|
535
|
+ model1.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
|
|
536
|
+ model1.summary()
|
|
537
|
+ path_checkpoint="model_noclass_v2_"+str(4)+listToString(features)+"_checkpoint.weights.h5"
|
|
538
|
+ es_callback=keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)
|
|
539
|
+ modelckpt_callback=keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint, verbose=1, save_weights_only=True, save_best_only=True,)
|
|
540
|
+ model1.load_weights(path_checkpoint)
|
|
541
|
+
|
|
542
|
+ model2 = keras.Sequential(
|
|
543
|
+ [
|
|
544
|
+ layers.Input(shape=(20, 3)),
|
|
545
|
+ layers.Conv1D(
|
|
546
|
+ filters=NumFilters,
|
|
547
|
+ kernel_size=KernelSize,
|
|
548
|
+ padding="same",
|
|
549
|
+ strides=2,
|
|
550
|
+ activation="relu",
|
|
551
|
+ ),
|
|
552
|
+ layers.Dropout(rate=DropOut),
|
|
553
|
+ layers.Conv1D(
|
|
554
|
+ filters=int(NumFilters/2),
|
|
555
|
+ kernel_size=KernelSize,
|
|
556
|
+ padding="same",
|
|
557
|
+ strides=2,
|
|
558
|
+ activation="relu",
|
|
559
|
+ ),
|
|
560
|
+ layers.Conv1DTranspose(
|
|
561
|
+ filters=int(NumFilters/2),
|
|
562
|
+ kernel_size=KernelSize,
|
|
563
|
+ padding="same",
|
|
564
|
+ strides=2,
|
|
565
|
+ activation="relu",
|
|
566
|
+ ),
|
|
567
|
+ layers.Dropout(rate=DropOut),
|
|
568
|
+ layers.Conv1DTranspose(
|
|
569
|
+ filters=NumFilters,
|
|
570
|
+ kernel_size=KernelSize,
|
|
571
|
+ padding="same",
|
|
572
|
+ strides=2,
|
|
573
|
+ activation="relu",
|
|
574
|
+ ),
|
|
575
|
+ layers.Conv1DTranspose(filters=3, kernel_size=KernelSize, padding="same"),
|
|
576
|
+ ]
|
|
577
|
+ )
|
|
578
|
+ model2.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
|
|
579
|
+ model2.summary()
|
|
580
|
+ path_checkpoint="model_noclass_v2_"+str(20)+listToString(features)+"_checkpoint.weights.h5"
|
|
581
|
+ es_callback=keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=15)
|
|
582
|
+ modelckpt_callback=keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint, verbose=1, save_weights_only=True, save_best_only=True,)
|
|
583
|
+ model2.load_weights(path_checkpoint)
|
|
584
|
+
|
|
585
|
+ datalist=[dataTestNorm[0],dataTestNorm[3],dataTestNorm[2],dataTestNorm[1],dataTestNorm[4]]
|
|
586
|
+ d=np.vstack((datalist))
|
|
587
|
+ x_test = create_sequences(d,4)
|
|
588
|
+ x_test_pred = model1.predict(x_test)
|
|
589
|
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
590
|
+ testRanges=[]
|
|
591
|
+ TIME_STEPS=4
|
|
592
|
+ r=0
|
|
593
|
+ for i in range(len(datalist)):
|
|
594
|
+ testRanges.append([r,r+datalist[i].shape[0]])
|
|
595
|
+ r+=datalist[i].shape[0]
|
|
596
|
+ testRanges[NumberOfFailures][1]=testRanges[NumberOfFailures][1]-TIME_STEPS
|
|
597
|
+ anomalies = test_mae_loss > threshold[4]*float(options.TF)
|
|
598
|
+ anomalous_data_indices = []
|
|
599
|
+ for i in range(anomalies.shape[0]):
|
|
600
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
601
|
+ anomalous_data_indices.append(i)
|
|
602
|
+
|
|
603
|
+ plt.rcParams.update({'font.size': 16})
|
|
604
|
+ fig, axes = plt.subplots(
|
|
605
|
+ nrows=2, ncols=1, figsize=(15, 7), dpi=80, facecolor="w", edgecolor="k" , sharex=True
|
|
606
|
+ )
|
|
607
|
+ for i in range(1):
|
|
608
|
+ init=0
|
|
609
|
+ end=testRanges[0][1]
|
|
610
|
+ axes[i].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="No fail")
|
|
611
|
+ init=end
|
|
612
|
+ end+=(testRanges[1][1]-testRanges[1][0])
|
|
613
|
+ for j in range(1,NumberOfFailures+1):
|
|
614
|
+ axes[i].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Fail type "+str(j), color=colorline[j-1])
|
|
615
|
+ if j<NumberOfFailures:
|
|
616
|
+ init=end
|
|
617
|
+ end+=(testRanges[j+1][1]-testRanges[j+1][0])
|
|
618
|
+ x=[]
|
|
619
|
+ y=[]
|
|
620
|
+ for k in anomalous_data_indices:
|
|
621
|
+ if (k+TIME_STEPS)<x_test.shape[0]:
|
|
622
|
+ x.append(k+TIME_STEPS)
|
|
623
|
+ y.append(x_test[k+TIME_STEPS,0,indexesToPlot[i]]*stdevs[i]+means[i])
|
|
624
|
+ axes[i].plot(x,y ,color='grey',marker='.',linewidth=0,label="Fail detection" )
|
|
625
|
+
|
|
626
|
+ if i==(NumFeatures-1):
|
|
627
|
+ axes[i].legend(loc='right')
|
|
628
|
+ s=''
|
|
629
|
+ s+=featureNames[features[indexesToPlot[i]]]
|
|
630
|
+ s+=' '+unitNames[features[indexesToPlot[i]]]
|
|
631
|
+ axes[i].set_ylabel(s)
|
|
632
|
+ axes[i].grid()
|
|
633
|
+
|
|
634
|
+
|
|
635
|
+ x_test = create_sequences(d,20)
|
|
636
|
+ x_test_pred = model2.predict(x_test)
|
|
637
|
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
638
|
+ testRanges=[]
|
|
639
|
+ r=0
|
|
640
|
+ TIME_STEPS=20
|
|
641
|
+ for i in range(len(datalist)):
|
|
642
|
+ testRanges.append([r,r+datalist[i].shape[0]])
|
|
643
|
+ r+=datalist[i].shape[0]
|
|
644
|
+ testRanges[NumberOfFailures][1]=testRanges[NumberOfFailures][1]-TIME_STEPS
|
|
645
|
+ anomalies = test_mae_loss > threshold[20]*float(options.TF)
|
|
646
|
+ anomalous_data_indices = []
|
|
647
|
+ for i in range(anomalies.shape[0]):
|
|
648
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
649
|
+ anomalous_data_indices.append(i)
|
|
650
|
+ print(testRanges)
|
|
651
|
+ for i in range(1):
|
|
652
|
+ init=0
|
|
653
|
+ end=testRanges[0][1]
|
|
654
|
+ axes[i+1].plot(range(init,end),x_test[testRanges[0][0]:testRanges[0][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="No fail")
|
|
655
|
+ init=end
|
|
656
|
+ end+=(testRanges[1][1]-testRanges[1][0])
|
|
657
|
+ for j in range(1,NumberOfFailures+1):
|
|
658
|
+ if j==1:
|
|
659
|
+ axes[i+1].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i],label="Fail type 3", color=colorline[j-1])
|
|
660
|
+ else:
|
|
661
|
+ axes[i+1].plot(range(init,end),x_test[testRanges[j][0]:testRanges[j][1],0,indexesToPlot[i]]*stdevs[i]+means[i], color=colorline[j-1])
|
|
662
|
+ if j<NumberOfFailures:
|
|
663
|
+ init=end
|
|
664
|
+ end+=(testRanges[j+1][1]-testRanges[j+1][0])
|
|
665
|
+ x=[]
|
|
666
|
+ y=[]
|
|
667
|
+ for k in anomalous_data_indices:
|
|
668
|
+ if (k+TIME_STEPS)<x_test.shape[0]:
|
|
669
|
+ x.append(k+TIME_STEPS)
|
|
670
|
+ y.append(x_test[k+TIME_STEPS,0,indexesToPlot[i]]*stdevs[i]+means[i])
|
|
671
|
+ axes[i+1].plot(x,y ,color='grey',marker='.',linewidth=0,label="Fail detection" )
|
|
672
|
+ if i==0:
|
|
673
|
+ axes[i+1].legend(loc='right')
|
|
674
|
+ s=''
|
|
675
|
+ s+=featureNames[features[indexesToPlot[i]]]
|
|
676
|
+ s+=' '+unitNames[features[indexesToPlot[i]]]
|
|
677
|
+ axes[i+1].set_ylabel(s)
|
|
678
|
+ axes[i+1].grid()
|
|
679
|
+
|
|
680
|
+ axes[0].set_xlim(460,480)
|
|
681
|
+ axes[1].set_xlim(460,480)
|
|
682
|
+
|
|
683
|
+ axes[0].set_title('$ns=4$')
|
|
684
|
+ axes[1].set_title('$ns=20$')
|
|
685
|
+ axes[1].set_xlabel("Sample number")
|
|
686
|
+ plt.show()
|
|
687
|
+
|
|
688
|
+
|
|
689
|
+
|
|
690
|
+plotData5()
|
|
691
|
+exit(0)
|
|
692
|
+
|
|
693
|
+
|
|
694
|
+
|
|
695
|
+# 2nd scenario. Detect only anomaly. Later, we will classiffy it
|
|
696
|
+# Test data= testnormal + testfail1 + testtail2 + testfail3 + testfail4 + testnormal
|
|
697
|
+#d=np.vstack((dataTestNorm[0],dataTestNorm[1],dataTestNorm[2],dataTestNorm[3],dataTestNorm[4],dataTestNorm[0]))
|
|
698
|
+num=100
|
|
699
|
+d=np.vstack((dataTestNorm[0][0:num,:],dataTestNorm[1][0:num,:],dataTestNorm[0][num:2*num,:],dataTestNorm[2][70:70+num,:],dataTestNorm[0][2*num-90:3*num-90,:],dataTestNorm[3][50:num+50,:],dataTestNorm[0][150:150+num,:],dataTestNorm[4][0:num+TIME_STEPS,:]))
|
|
700
|
+
|
|
701
|
+x_test = create_sequences(d,int(options.timesteps))
|
|
702
|
+x_test_pred = model.predict(x_test)
|
|
703
|
+test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
|
704
|
+
|
|
705
|
+
|
|
706
|
+anomalies = test_mae_loss > threshold[int(options.timesteps)]*float(options.TF)
|
|
707
|
+anomalous_data_indices = []
|
|
708
|
+for i in range(anomalies.shape[0]):
|
|
709
|
+ if AtLeastOneTrue(anomalies[i]):
|
|
710
|
+ #if anomalies[i][0] or anomalies[i][1] or anomalies[i][2] or anomalies[i][3]:
|
|
711
|
+ anomalous_data_indices.append(i)
|
|
712
|
+
|
|
713
|
+def plotData4():
|
|
714
|
+ NumFeaturesToPlot=len(indexesToPlot)
|
|
715
|
+ plt.rcParams.update({'font.size': 16})
|
|
716
|
+ fig, axes = plt.subplots(
|
|
717
|
+ nrows=NumFeaturesToPlot, ncols=1, figsize=(15, 10), dpi=80, facecolor="w", edgecolor="k",sharex=True
|
|
718
|
+ )
|
|
719
|
+ for i in range(NumFeaturesToPlot):
|
|
720
|
+ for j in range(1,NumberOfFailures+1):
|
|
721
|
+ if j==1:
|
|
722
|
+ axes[i].plot(range((j-1)*2*num,(j-1)*2*num+num),x_test[(j-1)*2*num:(j-1)*2*num+num,0,indexesToPlot[i]],label="No fail", color='C0')
|
|
723
|
+ else:
|
|
724
|
+ axes[i].plot(range((j-1)*2*num,(j-1)*2*num+num),x_test[(j-1)*2*num:(j-1)*2*num+num,0,indexesToPlot[i]], color='C0')
|
|
725
|
+ axes[i].plot(range(j*2*num-num,j*2*num),x_test[j*2*num-num:j*2*num,0,indexesToPlot[i]],label="File type "+str(j),color=colorline[j-1])
|
|
726
|
+ x=[]
|
|
727
|
+ y=[]
|
|
728
|
+ for k in anomalous_data_indices:
|
|
729
|
+ if (k+TIME_STEPS)<x_test.shape[0]:
|
|
730
|
+ x.append(k+TIME_STEPS)
|
|
731
|
+ y.append(x_test[k+TIME_STEPS,0,indexesToPlot[i]])
|
|
732
|
+ axes[i].plot(x,y ,color='grey',marker='.',linewidth=0,label="Fail detection" )
|
|
733
|
+
|
|
734
|
+ if i==0:
|
|
735
|
+ axes[i].legend(bbox_to_anchor=(0.9, 0.4))
|
|
736
|
+
|
|
737
|
+ s=''
|
|
738
|
+ s+=featureNames[features[indexesToPlot[i]]]
|
|
739
|
+ axes[i].set_ylabel(s)
|
|
740
|
+ axes[i].grid()
|
|
741
|
+ axes[NumFeaturesToPlot-1].set_xlabel("Sample number")
|
|
742
|
+ plt.show()
|
|
743
|
+
|
|
744
|
+
|
|
745
|
+plotData4()
|